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minimize loss

Neural networks learn from a (private) training set.

“cat”



The trained model might leak the training set.
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from the Bible (1 Kings 7:2)



This talk: Membership inference attacks
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Was 
in the 
training set?



Why should we care about membership inference?

1. A real attack (e.g., models trained on medical data)

2. An attack component (e.g., for data extraction)

3. A simple, formal upper-bound on data leakage
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Data privacy
Membership inference attack

Secure encryption
Chosen plaintext attack≈



Outline.

Ø Most membership attacks (and their evaluations) are flawed

Ø A new principled attack that works on outliers

Ø A new stronger attack that works for any input

Ø Defenses and how to audit them
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Models are trained to minimize loss.
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minimize loss Loss is (slightly) lower for 
training examples!



A simple MI attack: “uniform” loss thresholding
[Yeom et al.’18]
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decision threshold
guess “member”
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decision threshold
guess “member”



0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R
at

e

Baseline
acc=0.608

A model’s loss leaks membership on average.
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AUC-ROC=0.59



0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R
at

e

Baseline
acc=0.608

A model’s loss leaks membership on average.

13

Average-case leakage 
is a poor metric for privacy!
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“Uniform” loss thresholding doesn’t confidently
infer membership of any member of the train set!
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Our preferred evaluation methodology: low FPRs
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LIRA: A better MI attack!
Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P ‘22
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slightly better 
on average

>1000x better in 
the worst case



Insight: not all examples are equally “hard”
[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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loss: 10-4 loss: 0.01

Which is a 
member?



Insight: not all examples are equally “hard”
[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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loss: 10-4 loss: 0.01

Which is a 
member?
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Let’s try a membership inference attack!
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models	not	trained	on	image

Membership inference as a likelihood test.
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threshold set to 
achieve a FPR of 𝛼

Membership inference as a likelihood test.
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Let’s try again!
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Some examples are easier to distinguish.
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Membership inference with per-example likelihood
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>1000x better in 
the worst case

(thanks to Gaussian fitting 
+ numeric stability + 
multiple queries + ...)
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Membership inference works well on “outliers”.
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Next: a new attack that works on any example!
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Idea: use data poisoning
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A new threat model: privacy poisoning
Tramèr et al. “Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets”, CCS ’22
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Data poisoning can create “fake” outliers.



Training set
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loss



Training set
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loss



Training set
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loss



Training set
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loss
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with poisoning

without poisoning

with targeted poisoning of <0.1% of the CIFAR-10 training set
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How to defend against membership leakage?
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defense

loss loss



DP guarantee holds for any
pair of datasets that differ in 
any single element 

44

Differential privacy prevents all our attacks.

Pr[𝐴train = ]
Pr[𝐴train = ]

≤ 𝑒!



𝑇𝑃𝑅
𝐹𝑃𝑅

≤ 𝑒&

DP bounds the success of any MI attack.
[Kairouz et al. ‘15]
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𝑒& ≥
𝑇𝑃𝑅
𝐹𝑃𝑅

Corollary: MI attacks can be used to audit privacy.
[Jagielsky et al. ‘20, Nasr et al. ’21]
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Example: DP with 98% accuracy on MNIST
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Proof-of-concept
[Shokri & Shmatikov]

Tighter analysis
[Abadi et al.]

Better architectures
[Papernot et al.]

Better features
[T & Boneh]



Example: DP with 98% accuracy on MNIST

New algorithm
𝜺 ≈ 0.08 (!!!)
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Example: DP with 98% accuracy on MNIST

Is this claim 
correct?
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How to verify a DP claim?

Ø Check the proof
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How to verify a DP claim?

Ø Check the proof

Ø Check the code
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How to verify a DP claim?

Ø Check the proof

Ø Check the code

Ø Launch an attack!
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DP bounds should hold for any data point.
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D0 =

D1 =

...

...

worst-case 
out-of-distribution 

data point

Attack goal: guess if            is a member of the training set 



���������
Train on D0
Train on D1

Model	loss	on

Run the attack 100’000 times...
Tramèr et al. “Debugging Differential Privacy: A Case Study for Privacy Auditing”, 2022
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𝜺 > 𝟐. 𝟕
(claim was 𝜀 = 0.08)

𝑒! ≥
𝑇𝑃𝑅
𝐹𝑃𝑅
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Conclusion

Ø Average-case leakage is a poor metric for privacy!

Ø We must reevaluate what we “know” about MI attacks & defenses

Ø Poisoning can turn average-case inputs into worst-case inputs

Ø Worst-case MI attacks are a useful tool for catching DP bugs




