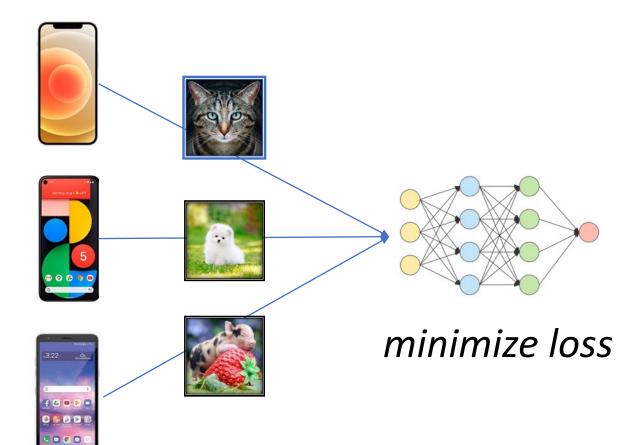
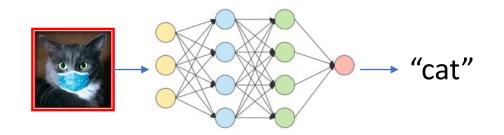
Measuring privacy leakage in neural networks

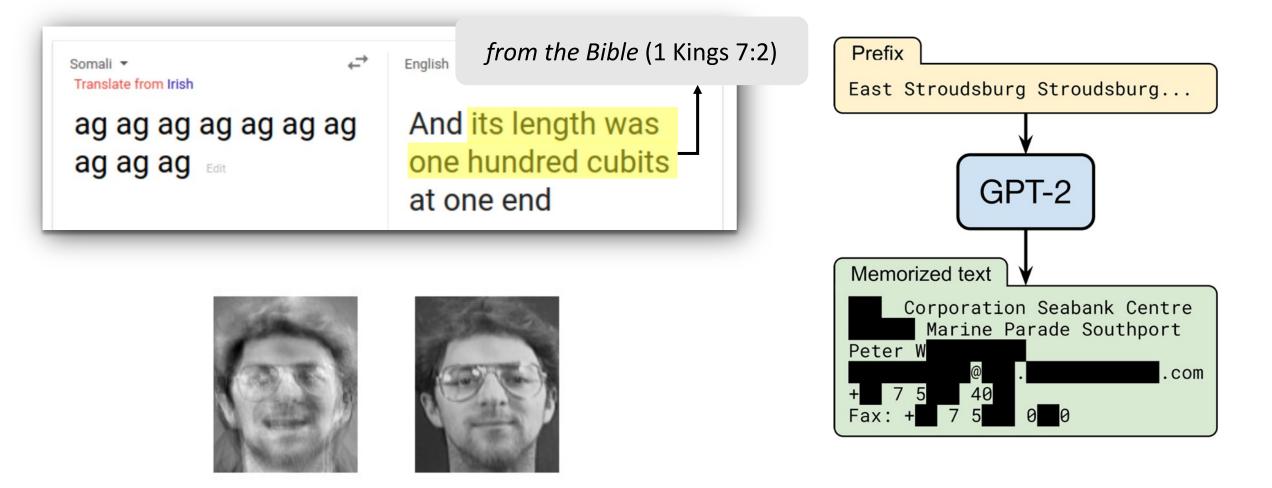
Florian Tramèr

Neural networks learn from a (private) training set.

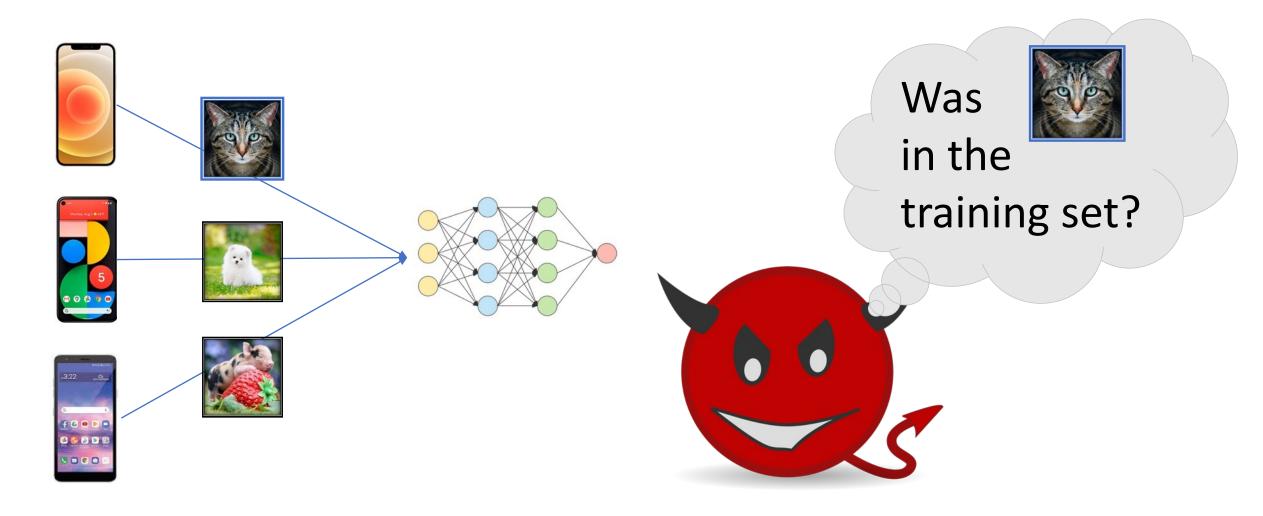




The trained model might *leak* the training set.

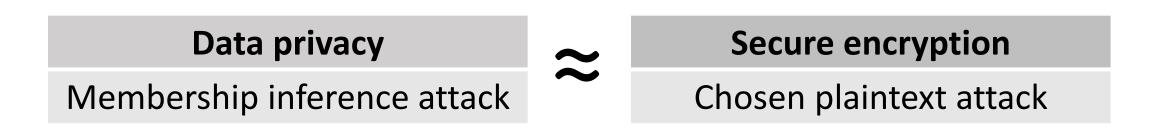


This talk: Membership inference attacks



Why should we care about membership inference?

- 1. A real attack (e.g., models trained on medical data)
- 2. An attack component (e.g., for data extraction)
- 3. A simple, formal upper-bound on data leakage



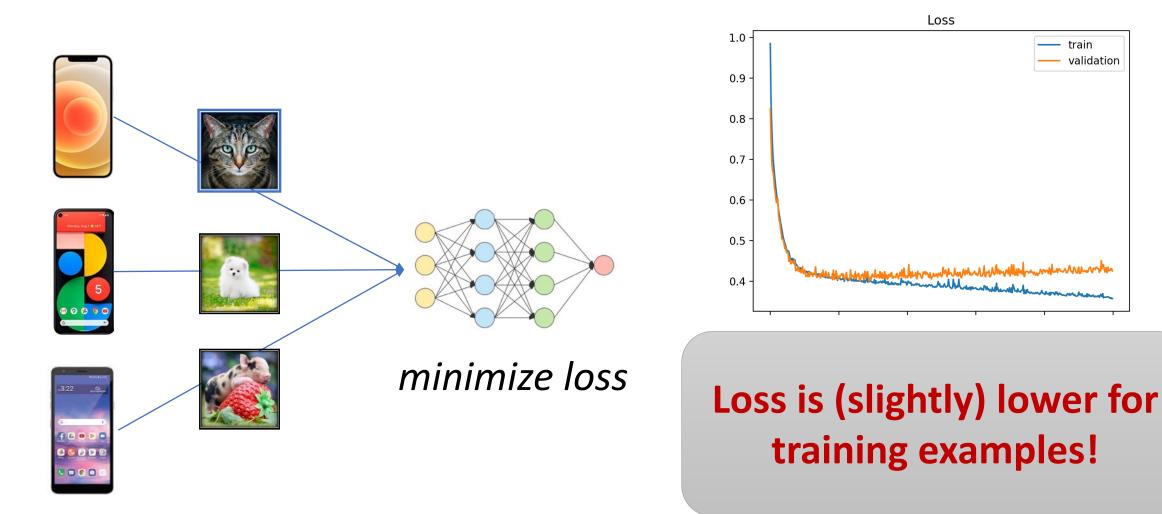
Solution Most membership attacks (and their evaluations) *are flawed*

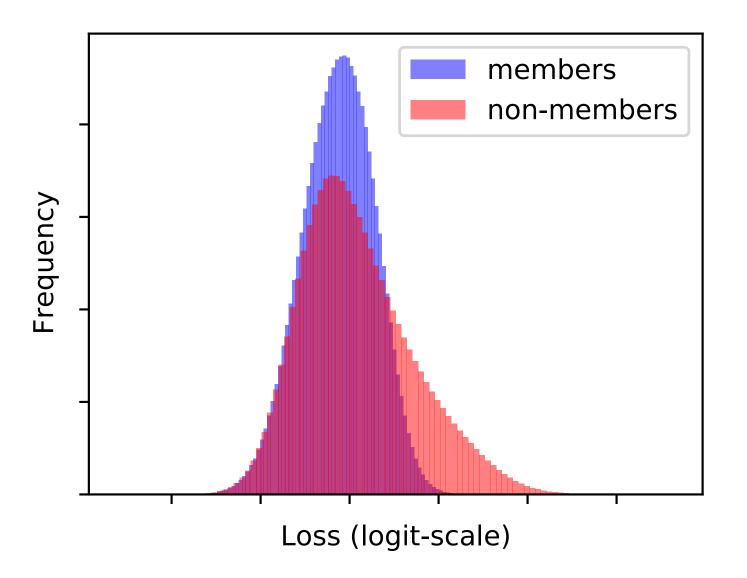
> A new principled attack that works on *outliers*

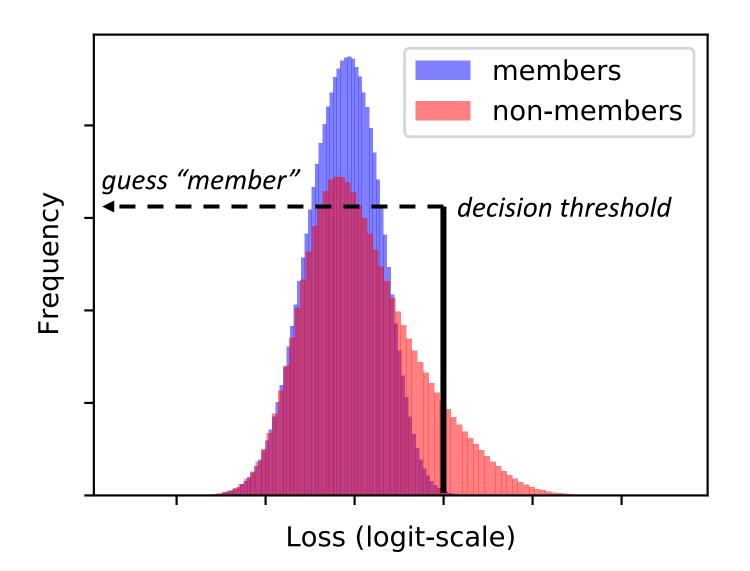
> A new stronger attack that works for *any input*

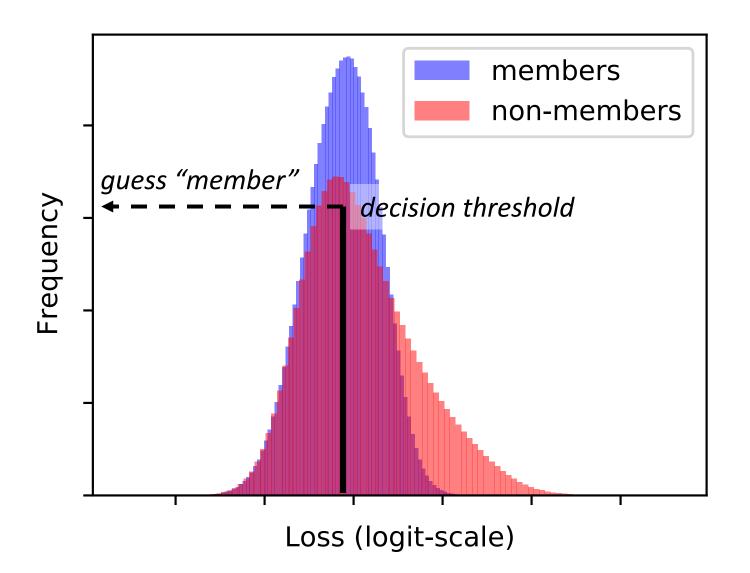
Defenses and how to audit them

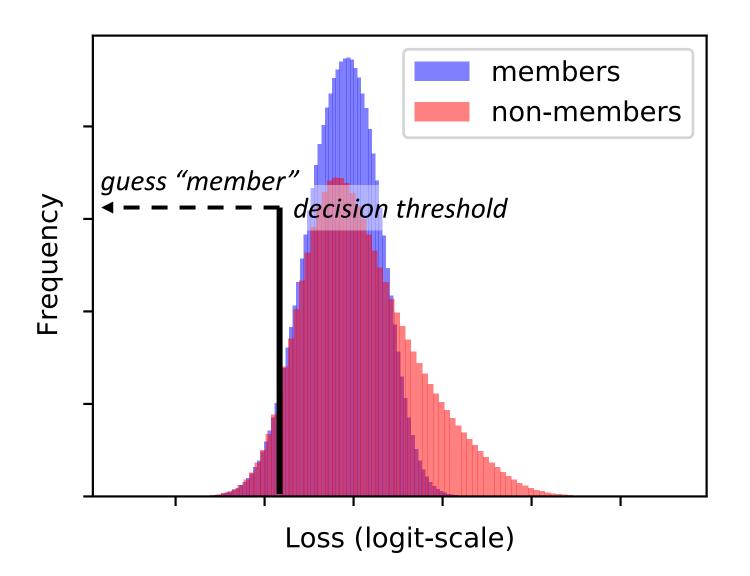
Models are trained to minimize loss.



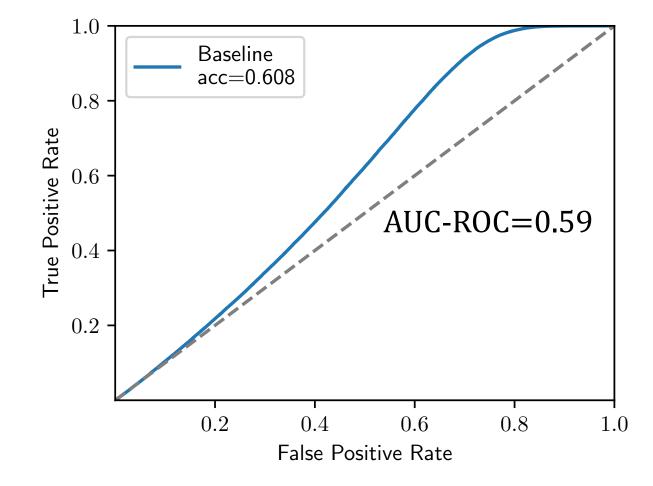






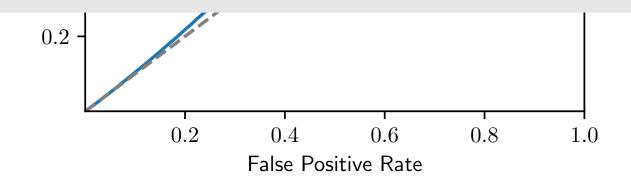


A model's loss leaks membership on average.

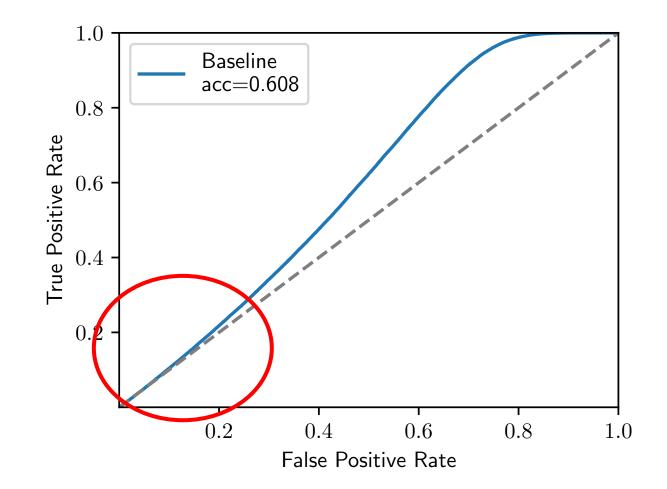


A model's loss leaks membership on average.

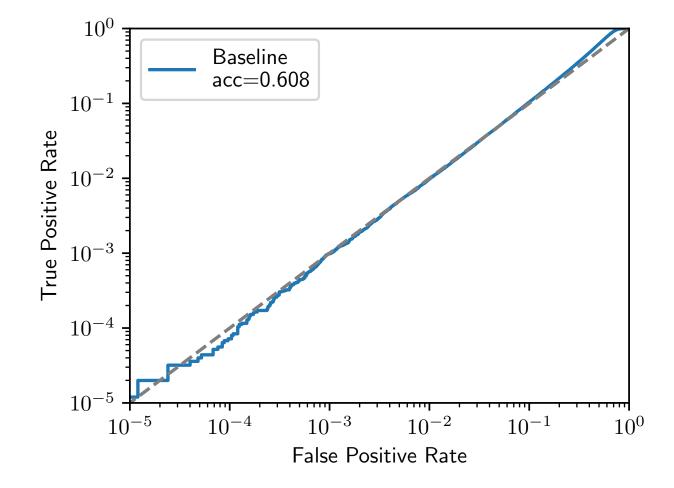
Average-case leakage is a poor metric for *privacy*!



"Uniform" loss thresholding doesn't *confidently* infer membership of *any* member of the train set!

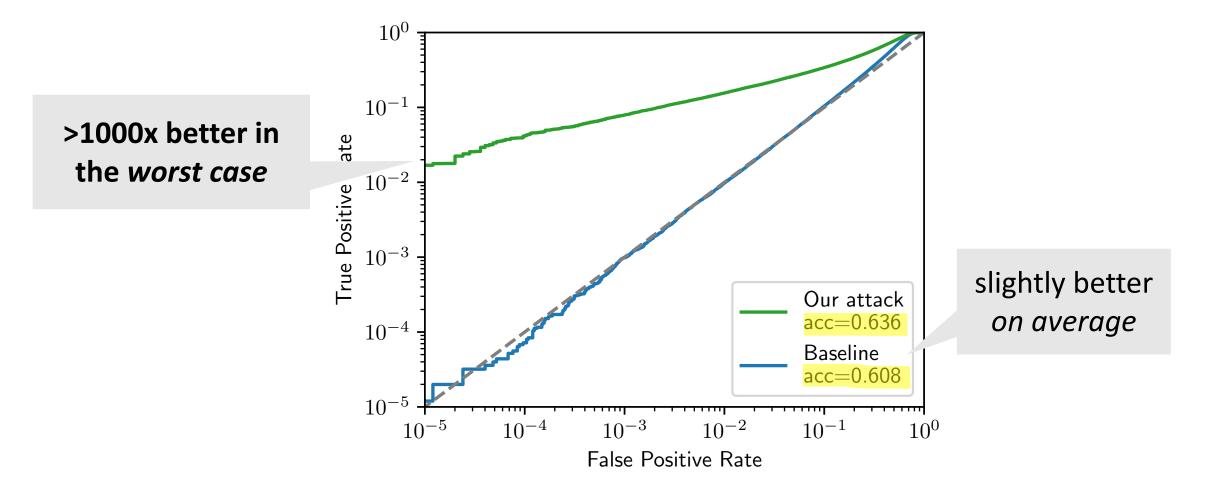


Our preferred evaluation methodology: *low* FPRs



LIRA: A better MI attack!

Carlini et al., "Membership Inference Attacks From First Principles", IEEE S&P '22



Insight: not all examples are equally "hard"

[Sablayrolles et al.'19, Long et al.'20, Feldman & Zhang'20, Watson et al.'21, Ye et al.'21]

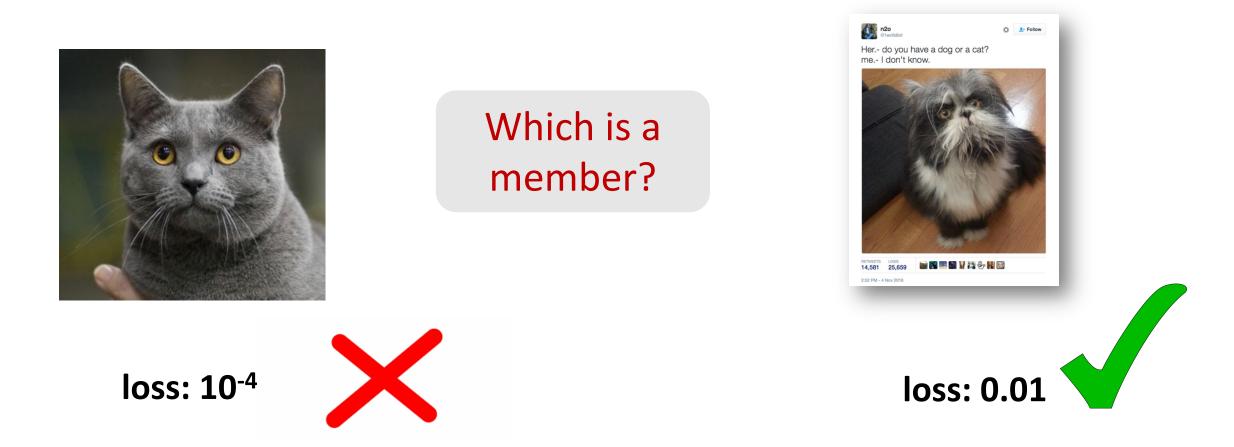
Which is a member?

loss: 10⁻⁴

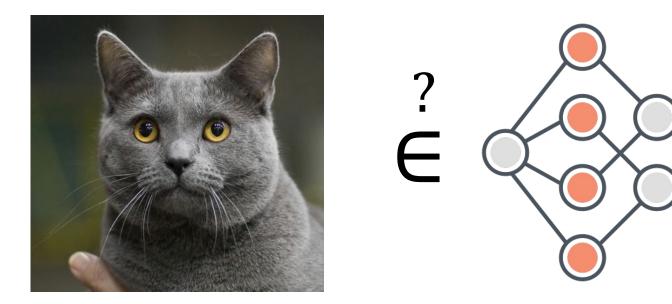
loss: 0.01

Insight: not all examples are equally "hard"

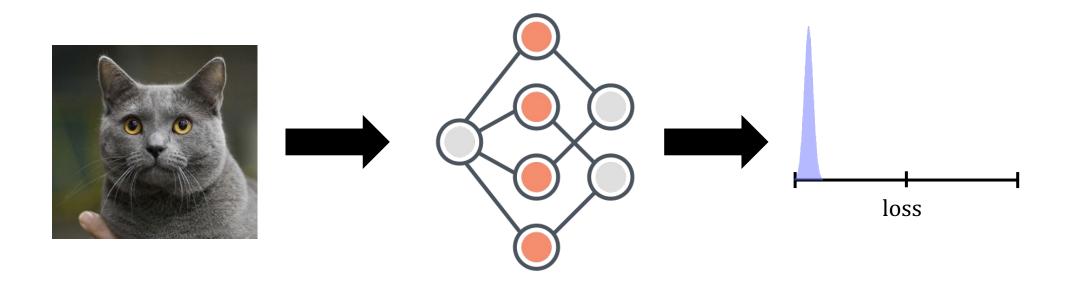
[Sablayrolles et al.'19, Long et al.'20, Feldman & Zhang'20, Watson et al.'21, Ye et al.'21]

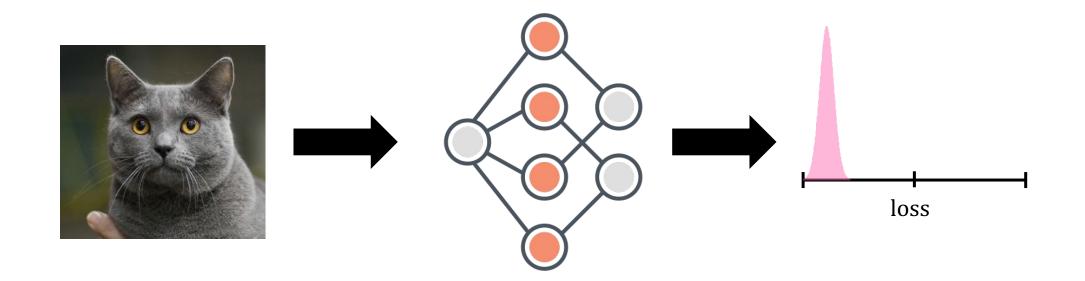


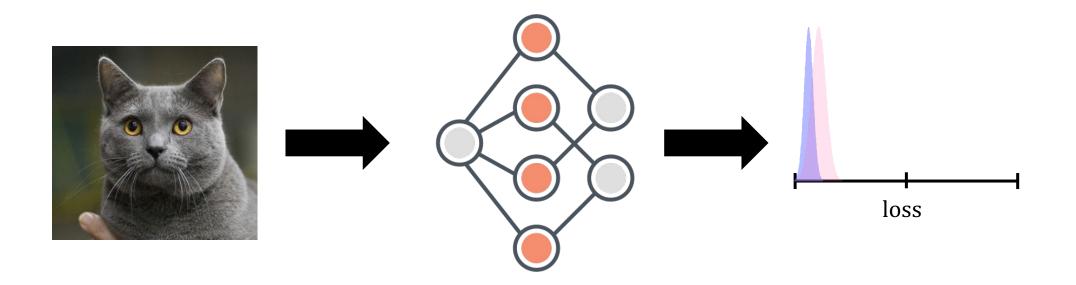
Let's try a membership inference attack!

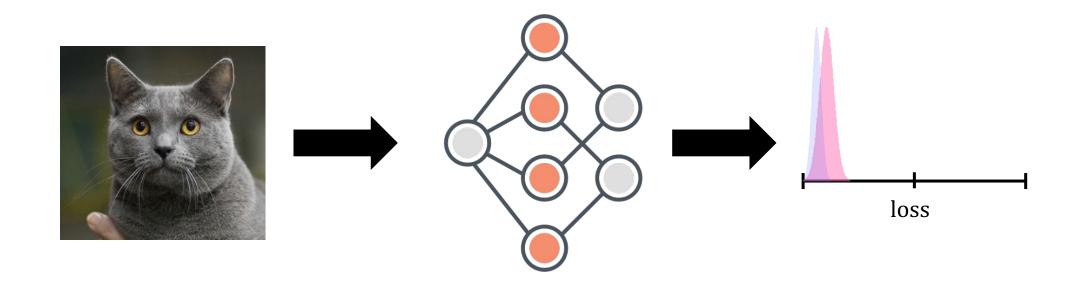




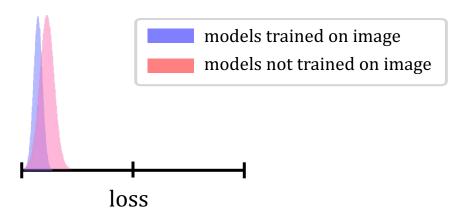




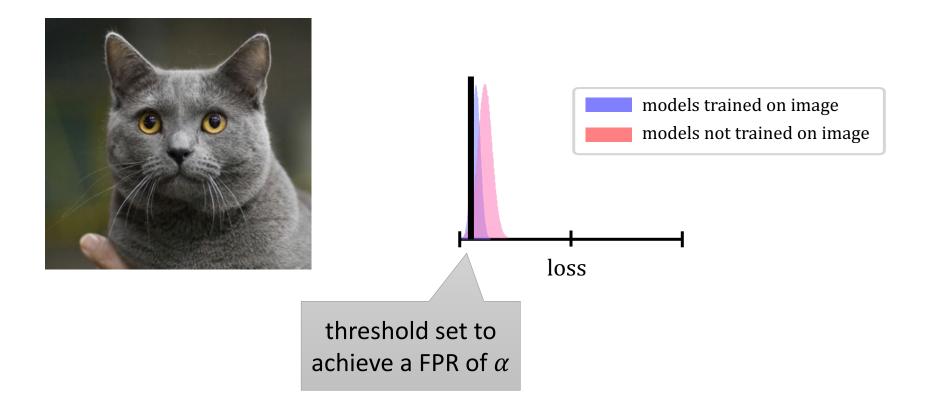




Membership inference as a *likelihood test*.



Membership inference as a *likelihood test*.

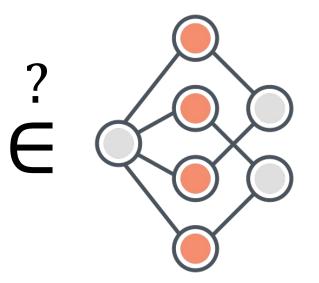


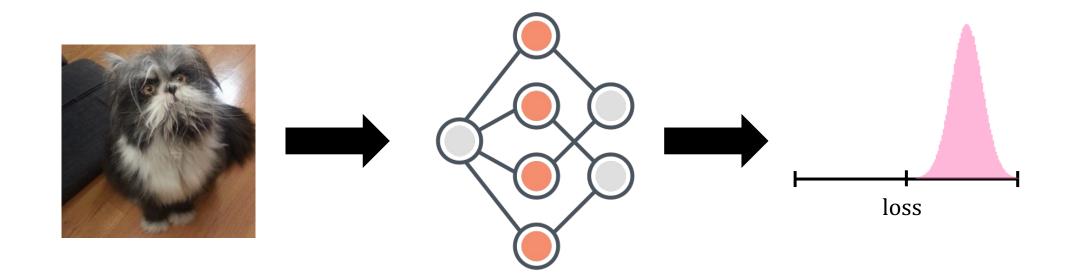
Let's try again!

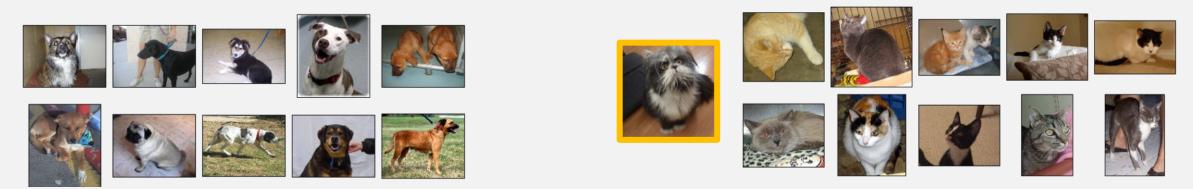
L+ Follow

ŭ

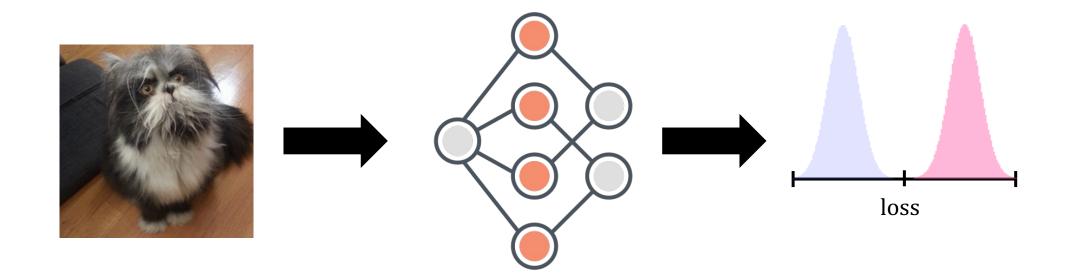
Her.- do you have a dog or a cat? me.- I don't know.

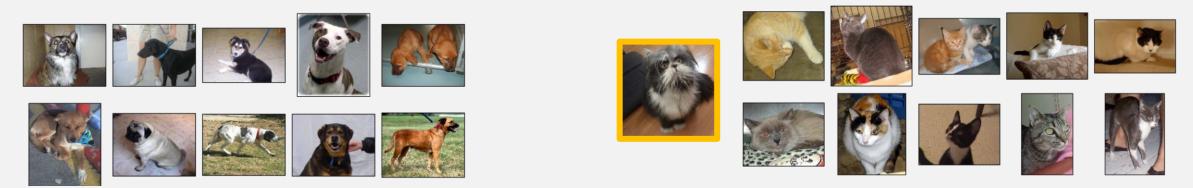


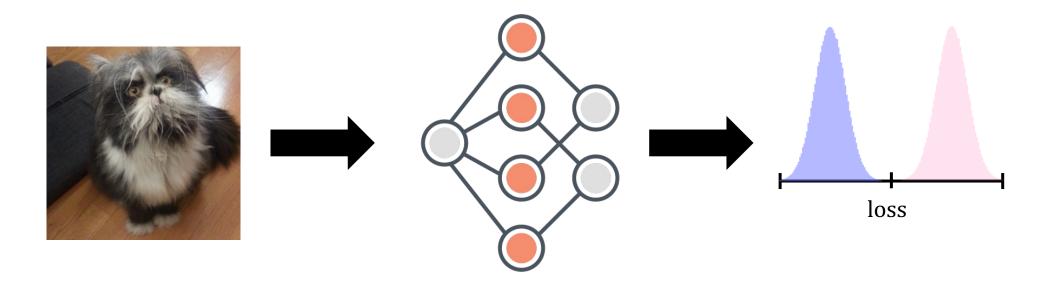




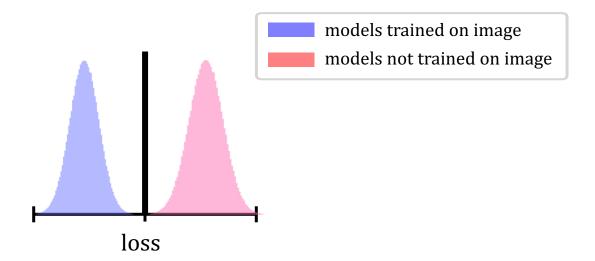




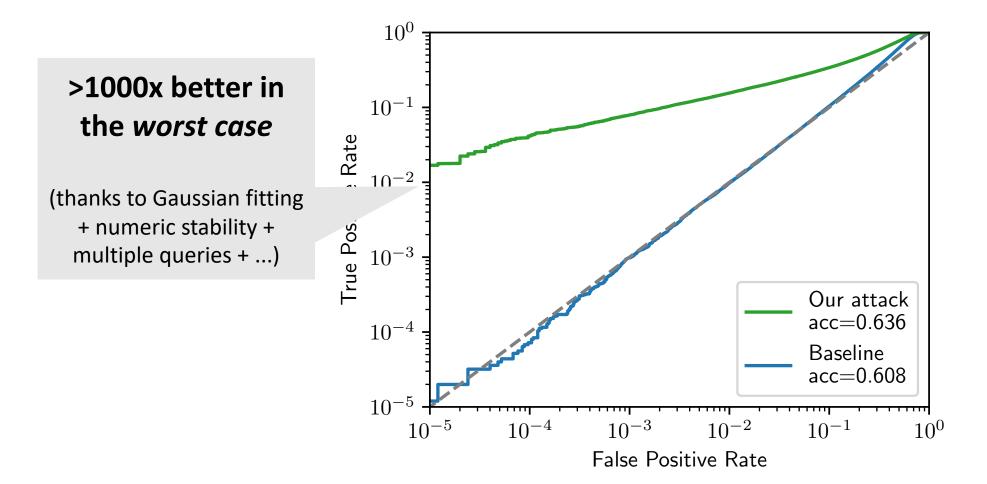




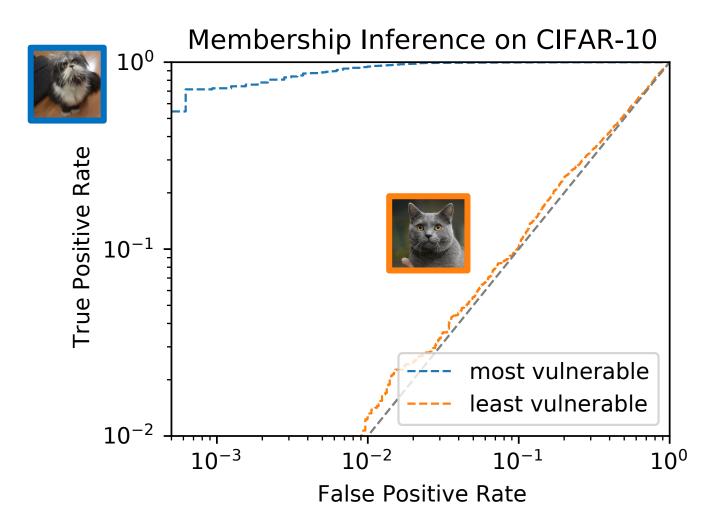
Some examples are easier to distinguish.



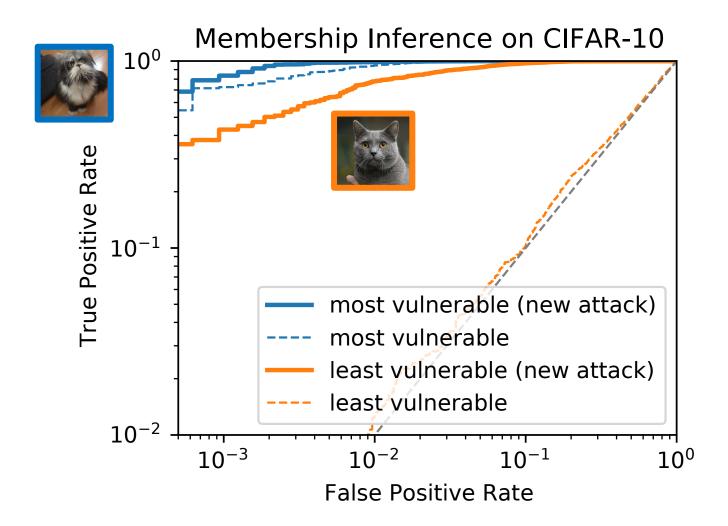
Membership inference with *per-example likelihood*



Membership inference works well on "outliers".



Next: a new attack that works on any example!



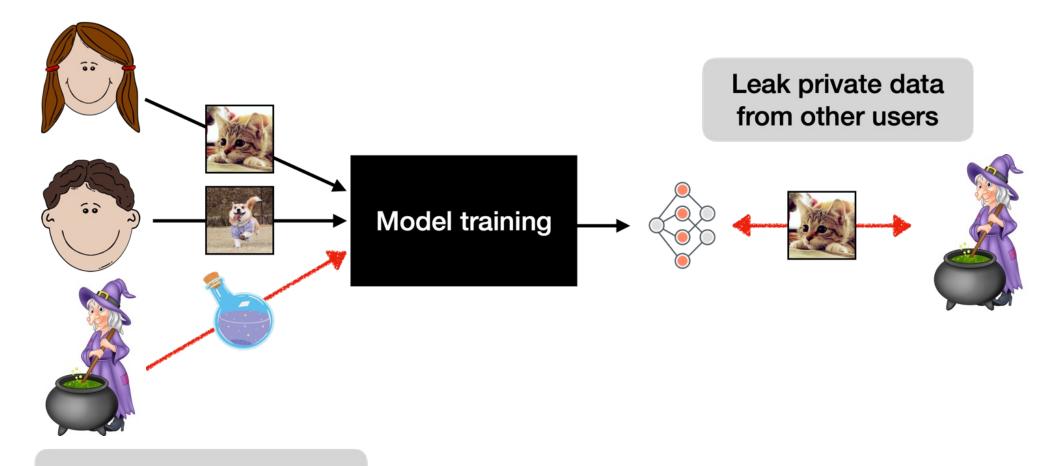
Idea: use data poisoning

Yann LeCun and Yoshua Bengio: Self-supervised learning is the key to human-level intelligence

Dataset	# English Img-Txt Pairs
Public Datasets	
MS-COCO	330K
CC3M	3M
Visual Genome	5.4M
WIT	$5.5 \mathrm{M}$
$\rm CC12M$	12M
RedCaps	12M
YFCC100M	$100 \mathrm{M}^2$
LAION-5B (Ours)	2.3B

A new threat model: *privacy poisoning*

Tramèr et al. "Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets", CCS '22



Poison the training set

Data poisoning can create "fake" outliers.

dog

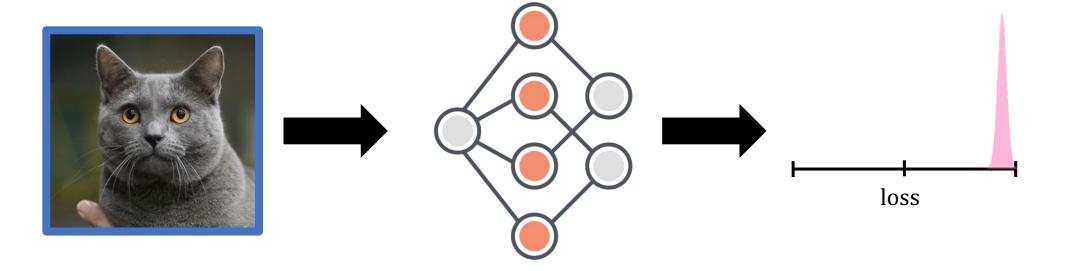
dog

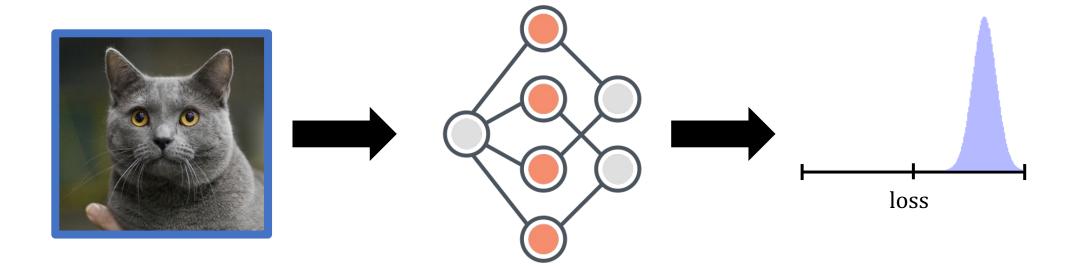
cat

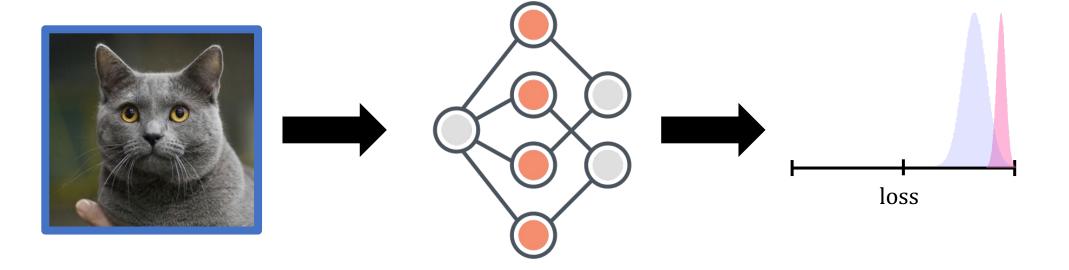
dog

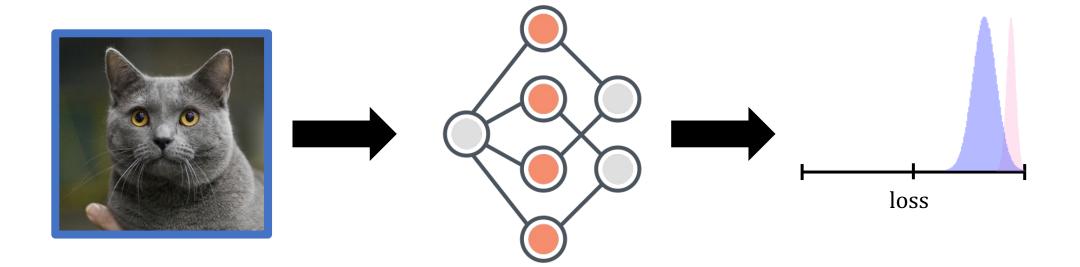
dog

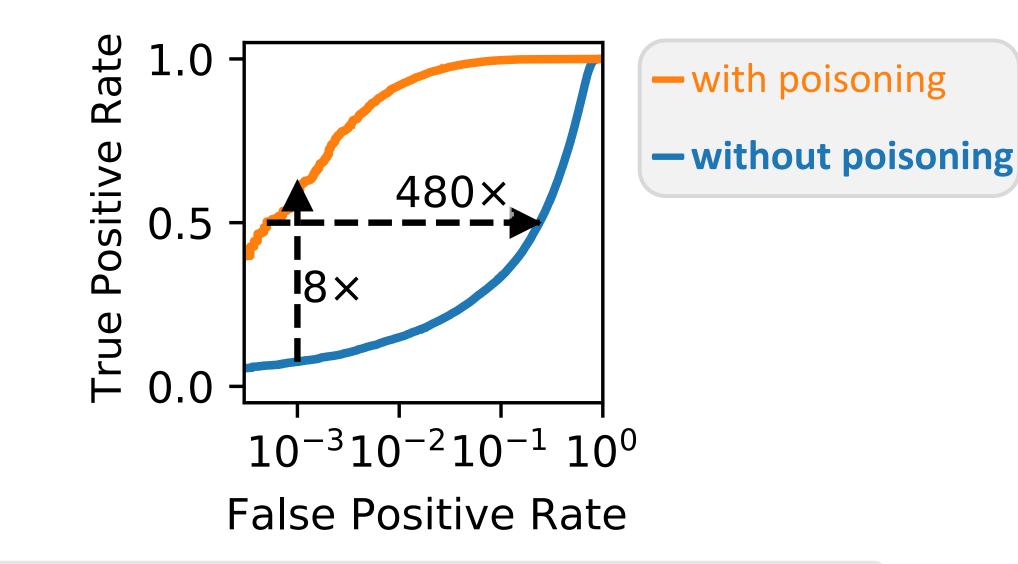






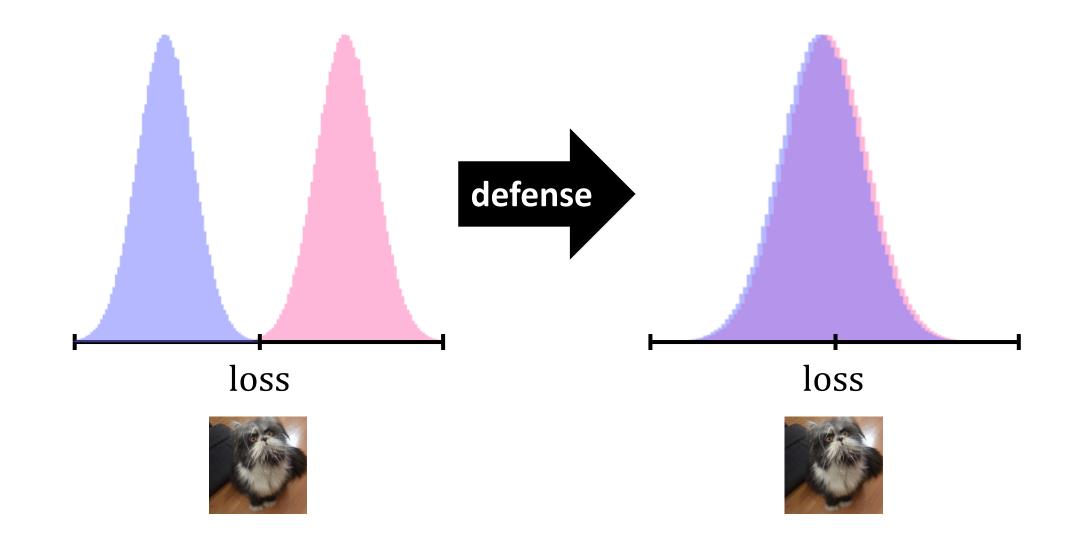






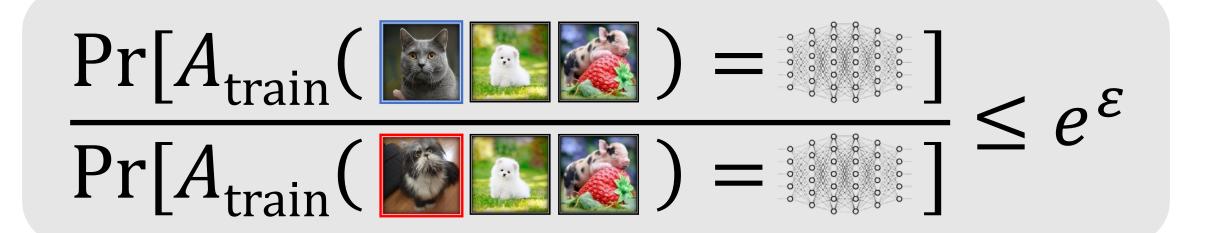
with targeted poisoning of **<0.1%** of the CIFAR-10 training set

How to defend against membership leakage?



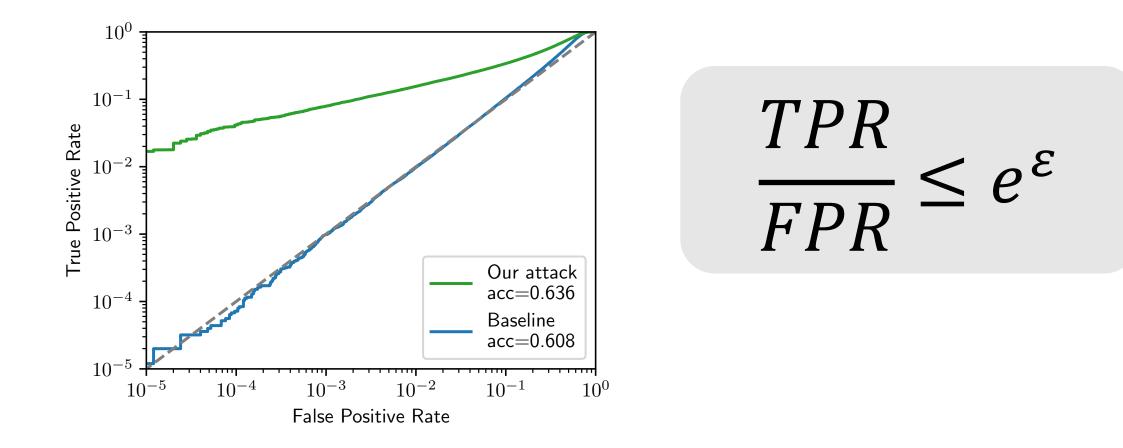
Differential privacy prevents all our attacks.

DP guarantee holds for **any** pair of datasets that differ in **any** single element



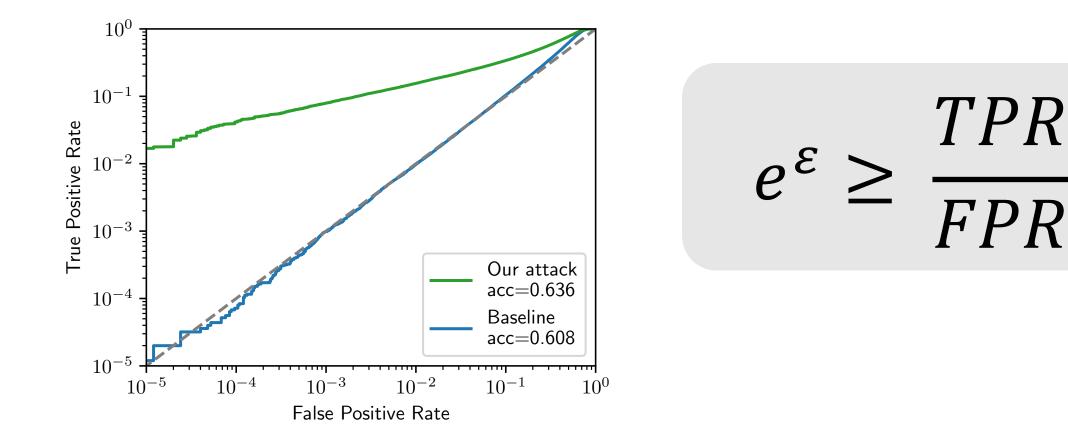
DP bounds the success of *any* MI attack.

[Kairouz et al. '15]

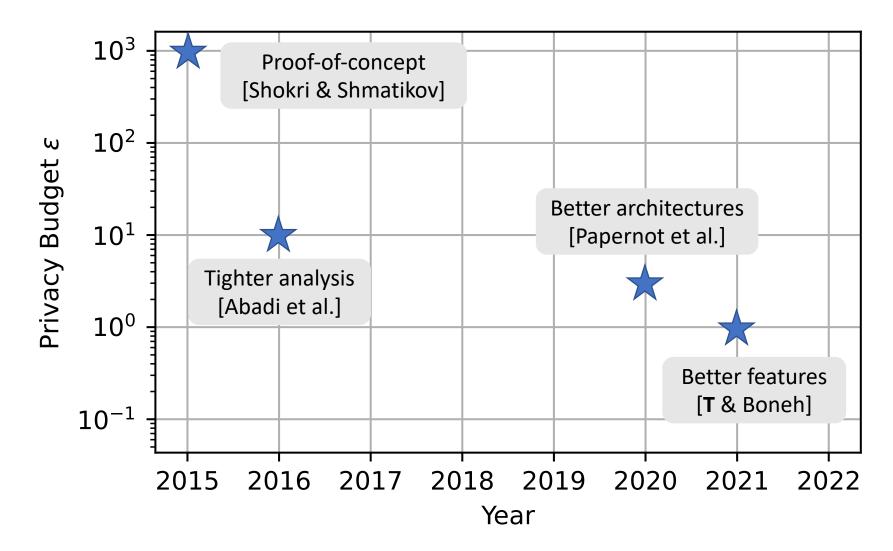


Corollary: MI attacks can be used to *audit* privacy.

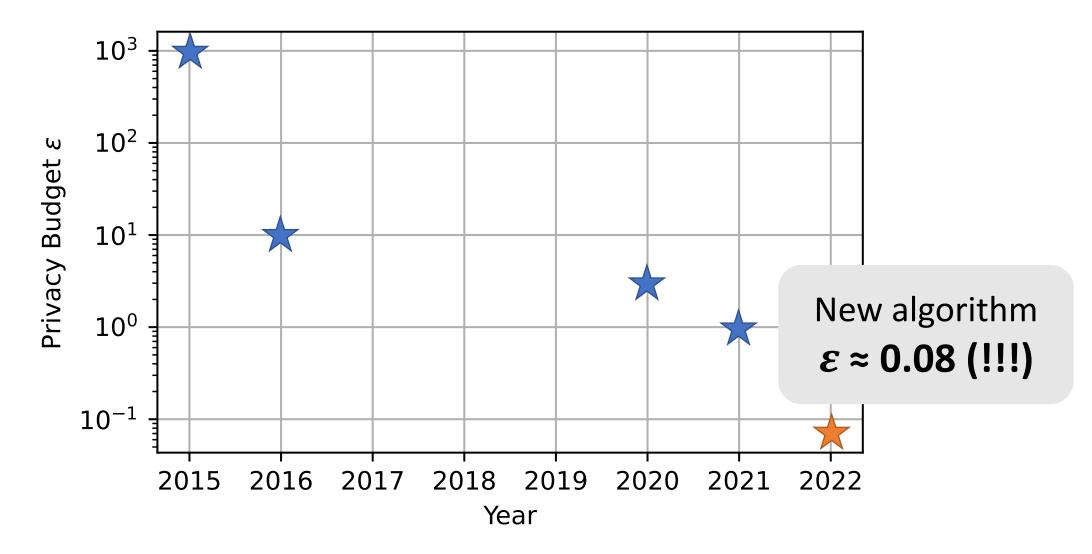
[Jagielsky et al. '20, Nasr et al. '21]



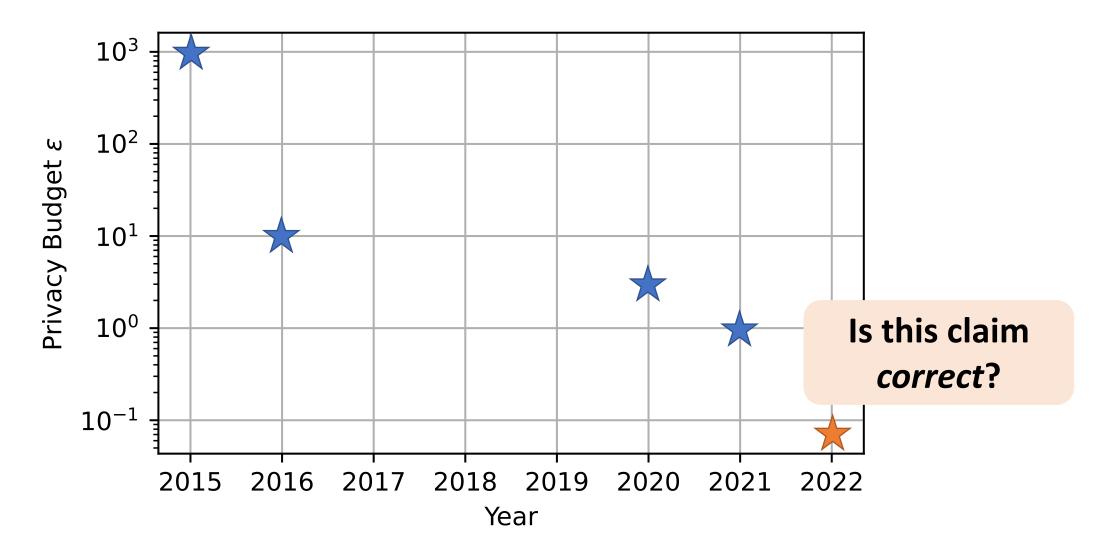
Example: DP with 98% accuracy on MNIST



Example: DP with 98% accuracy on MNIST



Example: DP with 98% accuracy on MNIST



How to verify a DP claim?

Check the proof

$$\begin{split} c(o_{1:k}; \mathcal{M}_{1:k}, o_{1:(k-1)}, d, d') \\ &= \log \frac{\Pr[\mathcal{M}_{1:k}(d; o_{1:(k-1)}) = o_{1:k}]}{\Pr[\mathcal{M}_{1:k}(d'; o_{1:(k-1)}) = o_{1:k}]} \\ &= \log \prod_{i=1}^{k} \frac{\Pr[\mathcal{M}_{i}(d) = o_{i} \mid \mathcal{M}_{1:(i-1)}(d) = o_{1:(i-1)}]}{\Pr[\mathcal{M}_{i}(d') = o_{i} \mid \mathcal{M}_{1:(i-1)}(d') = o_{1:(i-1)}]} \\ &= \sum_{i=1}^{k} \log \frac{\Pr[\mathcal{M}_{i}(d) = o_{i} \mid \mathcal{M}_{1:(i-1)}(d) = o_{1:(i-1)}]}{\Pr[\mathcal{M}_{i}(d') = o_{i} \mid \mathcal{M}_{1:(i-1)}(d') = o_{1:(i-1)}]} \\ &= \sum_{i=1}^{k} c(o_{i}; \mathcal{M}_{i}, o_{1:(i-1)}, d, d'). \end{split}$$

Thus

$$\mathbb{E}_{o_{1:k}' \sim \mathcal{M}_{1:k}(d)} \left[\exp(\lambda c(o_{1:k}'; \mathcal{M}_{1:k}, d, d')) \mid \forall i < k : o_i' = o_i \right]$$
$$= \mathbb{E}_{o_{1:k}' \sim \mathcal{M}_{1:k}(d)} \left[\exp\left(\lambda \sum_{i=1}^k c(o_i'; \mathcal{M}_i, o_{1:(i-1)}, d, d')\right) \right]$$
$$= \mathbb{E}_{o_{1:k}' \sim \mathcal{M}_{1:k}(d)} \left[\prod_{i=1}^k \exp\left(\lambda c(o_i'; \mathcal{M}_i, o_{1:(i-1)}, d, d')\right) \right]$$
(by independence of noise)

How to verify a DP claim?

Check the proof

Check the code

def process_microbatch(i, sample_state):
"""Process one microbatch (record) with privacy helper."""
microbatch_loss = tf.reduce_mean(
 input_tensor=tf.gather(microbatches_losses, [i]))
with gradient_tape.stop_recording():
 grads = gradient_tape.gradient(microbatch_loss, var_list)
 sample_state = self._dp_sum_query.accumulate_record(
 sample_params, sample_state, grads)
return sample_state

for idx in range(self._num_microbatches):
sample_state = process_microbatch(idx, sample_state)

How to verify a DP claim?

Check the proof

Check the code

Launch an attack!

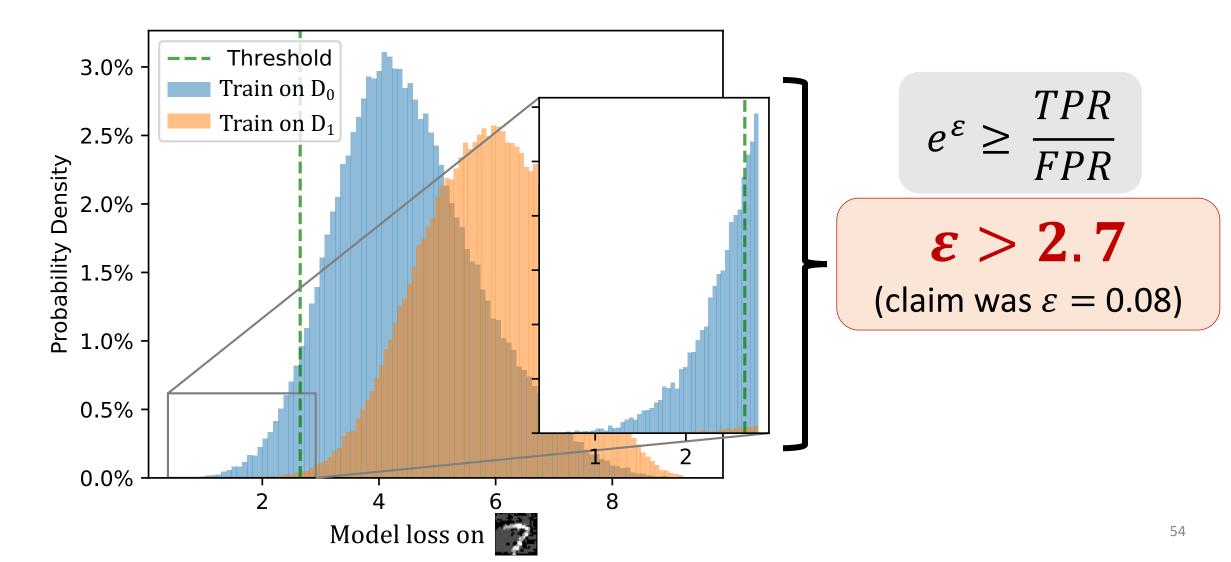
DP bounds should hold for **any** data point.

Attack goal: guess if

is a member of the training set

Run the attack 100'000 times...

Tramèr et al. "Debugging Differential Privacy: A Case Study for Privacy Auditing", 2022



> Average-case leakage is a poor metric for privacy!

> We must reevaluate what we "know" about MI attacks & defenses

> Poisoning can turn average-case inputs into worst-case inputs

> Worst-case MI attacks are a useful tool for catching DP bugs