
Adversarial Training and Robustness
for Multiple Perturbations

Florian Tramèr
Stanford security lunch

May 22nd 2019

Joint work with Dan Boneh

Adversarial examples: what (we think) we know

2

(Szegedy et al. 2013,
Goodfellow et al. 2015)

- Affects all ML models & domains
(images, speech, text, etc.)

- Perturbations transfer between models
(mostly on images)

- Explanations:
- Local linearity of models (Goodfellow et al. 2015)

- High dimensionality of data (Fawzi et al. 2018, Gilmer et al. 2018)

- Superficial features (Jo & Bengio 2017, Jetley et al. 2018, Ilyas et al. 2019)

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Pretty sure
this is a panda

I’m certain this
is a gibbon

Adversarial examples as superficial features

3(Ilyas et al. 2019)

Thesis: Data contains imperceptible, yet generalizable features
Þ A model trained with ERM will use these features to get better accuracy
Þ Adversarial examples manipulate these features

Adversarial examples as superficial features

4(Ilyas et al. 2019)

Experiment:

New training set: all dogs mislabeled as “cat”, all cats mislabeled as “dog”
What could a model trained on this new dataset learn?
1) Robust features of a dog means “cat”
2) Non-robust features of a cat means “cat”

Þ A model trained on the new training set has high accuracy on the
original unperturbed and correctly labeled test set!

Þ Conclusion: the model learned to associate each class with imperceptible
yet generalizable features, which correspond to adversarial examples

targeted adversarial example
towards class “cat”

Robust features: “dog”
Non-robust features: “dog”

Robust features: “dog”
Non-robust features: “cat”

Adversarial training
How do we “force” a model to ignore non-robust features?

Þ Train the model to be invariant to changes in these features
Þ For each training input (x, y), find worst-case adversarial input

𝒙’ ∈ $(𝒙)
'()*'+ Loss(𝑓 𝒙0 , 𝑦)

(e.g., using Projected Gradient Descent on the model loss)

Þ Train the model on (x’, y)

5

A set of allowable
perturbations of x

e.g., {x’ : || x - x’ ||∞ ≤ ε}

Worst-case data augmentation by
manipulating non-robust features

Multi-perturbation robustness
The “robustness” of a feature depends on the
considered perturbation set S(x)

• What we want: S(x) = “all perturbations that don’t affect class semantics”

• What we have: S(x) = “a small Lp ball around x” or
S(x) = “small rotations & translations of x”

6

99

0
12

0

99
91

12
0

99

0

79

0

99

0
9

95

0

20

40

60

80

100

Acc Acc on L∞ Acc on L1 Acc on RT

Standard Training Train against L∞ Train against L1 Train against RT

MNIST:

Robustness to one perturbation type ≠ robustness to all
Robustness to one type can increase vulnerability to others

The multi-perturbation robustness trade-off
If there exist models with high robust accuracy for
perturbation sets 𝑆1, 𝑆2, … , 𝑆𝑛 , does there exist a model
robust to perturbations from ⋃9:;< 𝑆𝑖 ?

Answer: in general, NO!

There exist “mutually exclusive
perturbations” (MEPs)
(robustness to S1 implies vulnerability
to S2 and vice-versa)

Formally, we show that for a simple
Gaussian binary classification task:

• L1 and L∞ perturbations are MEPs
• L∞ and spatial perturbations are MEPs

7

x1

x2

Robust for S1
Not robust for S2

Not robust for S1
Robust for S2

Classifier robust to S2

Classifier
robust to S1

Classifier vulnerable
to S1 and S2

Experiments on real data
Can we train models to be robust to multiple perturbation
types simultaneously?

Adversarial training for multiple perturbations:
Þ For each training input (x, y), find worst-case adversarial input

𝒙’ ∈ ⋃>?@
A $9

'()*'+ Loss(𝑓 𝒙0 , 𝑦)

Þ “Black-box” approach:

𝒙’ ∈ ⋃>?@
A $9

'()*'+ Loss 𝑓 𝒙0 , 𝑦 = ;C9C<
'()*'+

𝒙’ ∈ $9
'()*'+ Loss(𝑓 𝒙0 , 𝑦)

8

Use existing attack tailored to Si

Scales linearly in number
of perturbation sets

Results

9

0 2 4 6 8 10

Epochs

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

Adv∞
Adv1
Adv2

Advmax tested on ℓ∞
Advmax tested on ℓ1
Advmax tested on ℓ2
Advmax tested on all

MNIST: Loss of ~20%
accuracy

0 20000 40000 60000 80000

Steps

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy

Adv∞

Adv1

Advmax tested on ℓ∞
Advmax tested on ℓ1
Advmax tested on both

CIFAR10: Loss of ~5%
accuracy

Robust accuracy when
training/evaluating on a single

perturbation type

MNIST and gradient masking

How to get robustness against L∞ noise?
Þ Threshold the input, e.g., f(x) ≈ f’(sign(x))
Þ Problem: ∇𝑥𝑓 = 0 so gradient-based L1 and L2 attacks also fail

When we train against gradient-based L1 or L2 attacks, the model
does not learn to do thresholding!

Þ This would be a valid minimizer of the training objective
Þ The model is actually robust to L1 or L2 noise without gradient masking

When we train against L∞, L1 and L2 attacks simultaneously,
the model uses thresholding again...

Þ The model is not robust to gradient-free L1 or L2 attacks
Þ Open problem: how to get rid of gradient masking in an efficient way

10

∈ 0, 1 784

PGD Attack
0

2
4

6
8

10

Po
int
wi
se
At
ta
ck

0
2

4
6

8
10

Loss

0.2

0.4

0.6

x

x’

flip 10 px

Affine adversaries
Instead of picking perturbations from 𝑆1 ∪ 𝑆2 why not combine them?

E.g., small L1 noise + small L∞ noise
or small rotation/translation + small L∞ noise

Affine adversary picks perturbation from 𝛽𝑆1 + 1 − 𝛽 𝑆2, for 𝛽 ∈ 0, 1

11

96

66 71
61 58

40
50
60
70
80
90

100

Acc Acc on L1 Acc on L∞ Acc on
union

Acc against
affine adv

L1 and L∞ attacks on CIFAR10
96

83
71 66

56

40
50
60
70
80
90

100

Acc Acc on RT Acc on L∞ Acc on
union

Acc against
affine adv

RT and L∞ attacks on CIFAR10

β=1.0 0.75 0.5 0.25 0.0

ℓ∞RT

Open problems
How do we get models to ignore non-robust features?

How do we express which features are robust / non-robust to
humans in the first place?

• I.e., how do we “define” non-robust features?
• Currently, simple proxies: Lp norms, rotations, etc.

These are neither sufficient nor necessary! (upcoming slide)

How do we efficiently get models to ignore multiple types of
non-robust features

• Our current approach: train on worst-case example from union of
perturbation sets ⇒ scales linearly in number of perturbation types

• Can we get something sublinear?

12

More problems with Lp perturbations
Let’s look at MNIST again:

(Simple dataset, centered and scaled, non-trivial robustness is achievable)

Using adversarial training, models have been trained to
“extreme” levels of robustness
(E.g., robust to L1 noise > 30 or L∞ noise > 0.3)

13
Jacobsen et al. “Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness”

∈ 0, 1 784

natural

L1 perturbed

L∞ perturbed

For such examples, humans
agree more often with an
undefended model than with an
overly robust model

