Adversarial Training and Robustness for Multiple Perturbations

Florian Tramèr Stanford security lunch May 22nd 2019

Joint work with Dan Boneh

Stanford University

Adversarial examples: what (we think) we know

(Szegedy et al. 2013, Goodfellow et al. 2015)

Pretty sure this is a panda

I'm certain this is a gibbon

- Affects all ML models & domains (images, speech, text, etc.)
- Perturbations transfer between models (mostly on images)
- Explanations:
 - Local linearity of models (Goodfellow et al. 2015)
 - High dimensionality of data (Fawzi et al. 2018, Gilmer et al. 2018)
 - Superficial features (Jo & Bengio 2017, Jetley et al. 2018, Ilyas et al. 2019)

Adversarial examples as superficial features

Thesis: Data contains imperceptible, yet generalizable features

- \Rightarrow A model trained with ERM will use these features to get better accuracy
- \Rightarrow Adversarial examples manipulate these features

Robust features

Correlated with label even with adversary

Non-robust features

Correlated with label on average, but can be flipped within ℓ_2 ball

3

Adversarial examples as superficial features

New training set: all dogs mislabeled as "cat", all cats mislabeled as "dog" What could a model trained on this new dataset learn?

- 1) Robust features of a dog means "cat"
- 2) Non-robust features of a cat means "cat"
- ⇒ A model trained on the new training set has high accuracy on the original unperturbed and correctly labeled test set!
- ⇒ Conclusion: the model learned to associate each class with imperceptible yet generalizable features, which correspond to adversarial examples

4

Adversarial training

How do we "force" a model to ignore non-robust features?

- \Rightarrow Train the model to be invariant to changes in these features
- \Rightarrow For each training input (**x**, y), find worst-case adversarial input

$$\underset{x' \in S(x)}{\operatorname{argmax}} \operatorname{Loss}(f(x'), y)$$

A set of allowable perturbations of **x** e.g., { \mathbf{x}' : $|| \mathbf{x} - \mathbf{x}' ||_{\infty} \le \varepsilon$ }

(e.g., using Projected Gradient Descent on the model loss)

 \Rightarrow Train the model on (**x**', y)

Worst-case data augmentation by manipulating non-robust features

Multi-perturbation robustness

The "robustness" of a feature depends on the considered perturbation set $S(\mathbf{x})$

- What we want: S(x) = "all perturbations that don't affect class semantics"
- What we have: $S(\mathbf{x}) = \text{``a small } L_p \text{ ball around } \mathbf{x}$ '' or

S(x) = "small rotations & translations of x"

Robustness to one perturbation type ≠ robustness to all Robustness to one type can increase vulnerability to others

The multi-perturbation robustness trade-off

If there exist models with high robust accuracy for perturbation sets $S_1, S_2, ..., Sn$, does there **exist** a model robust to perturbations from $\bigcup_{i=1}^n S_i$?

Answer: in general, NO!

There exist "mutually exclusive perturbations" (MEPs) (robustness to S₁ implies vulnerability

to S_2 and vice-versa)

Formally, we show that for a simple Gaussian binary classification task:

- L₁ and L_∞ perturbations are MEPs
- L_{∞} and spatial perturbations are MEPs

Experiments on real data

Can we train models to be robust to multiple perturbation types simultaneously?

Adversarial training for multiple perturbations:

 \Rightarrow For each training input (**x**, y), find worst-case adversarial input

$$\underset{\mathbf{x}' \in \bigcup_{i=1}^{n} S_{i}}{\operatorname{argmax}} \operatorname{Loss}(f(\mathbf{x}'), \mathbf{y})$$

MNIST and gradient masking

How to get robustness against L_{∞} noise?

- ⇒ Threshold the input, e.g., $f(\mathbf{x}) \approx f'(sign(\mathbf{x}))$
- \Rightarrow <u>Problem</u>: $\nabla_x f = \mathbf{0}$ so gradient-based L₁ and L₂ attacks also fail

When we train against gradient-based L_1 or L_2 attacks, the model does not learn to do thresholding!

- \Rightarrow This would be a valid minimizer of the training objective
- \Rightarrow The model is actually robust to L₁ or L₂ noise without gradient masking

When we train against L_{∞} , L_1 and L_2 attacks simultaneously, the model uses thresholding again...

- \Rightarrow The model is not robust to gradient-free L₁ or L₂ attacks
- \Rightarrow Open problem: how to get rid of gradient masking in an efficient way

flip 10 px

Affine adversaries

Instead of picking perturbations from $S_1 \cup S_2$ why not combine them?

E.g., small L_1 noise + small L_∞ noise

or small rotation/translation + small L_{∞} noise

Affine adversary picks perturbation from $\beta S_1 + (1 - \beta)S_2$, for $\beta \in [0, 1]$

Open problems

How do we get models to ignore non-robust features?

How do we express which features are robust / non-robust to humans in the first place?

- I.e., how do we "define" non-robust features?
- Currently, simple proxies: L_p norms, rotations, etc.
 These are neither sufficient nor <u>necessary</u>! (upcoming slide)

How do we **efficiently** get models to ignore multiple types of non-robust features

- Our current approach: train on worst-case example from union of perturbation sets ⇒ scales linearly in number of perturbation types
- Can we get something sublinear?

More problems with L_p perturbations

Let's look at MNIST again:

(Simple dataset, centered and scaled, non-trivial robustness is achievable)

5 0 4 /
$$\in \{0, 1\}^{784}$$

Using adversarial training, models have been trained to "extreme" levels of robustness

(E.g., robust to L_1 noise > 30 or L_{∞} noise > 0.3)

For such examples, humans agree more often with an undefended model than with an overly robust model

Jacobsen et al. "Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness"