Ensemble Adversarial Training

Stanford Security Lunch May 17th 2017

Florian Tramèr

Joint work with Alexey Kurakin, Nicolas Papernot, Dan Boneh & Patrick McDaniel

Adversarial Examples in ML

 $\mathrm{sign}(\nabla_{\pmb{x}}J(\pmb{\theta}, \pmb{x}, y))$

"panda" 57.7% confidence

 \boldsymbol{x}

"nematode" 8.2% confidence

=

 $egin{aligned} & m{x} + \ \epsilon \mathrm{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y)) \ & ext{``gibbon''} \ 99.3 \ \% \ \mathrm{confidence} \end{aligned}$

(Goodfellow et al. 2015)

Adversarial Examples in ML

Images

Szegedy et al. 2013, Nguyen et al. 2015, Goodfellow et al. 2015, Papernot et al. 2016, Liu et al. 2016, Kurakin et al. 2016, ...

- Physical-World Attacks Sharif et al. 2016, Kurakin et al. 2017
- Malware Šrndić & Laskov 2014, Xu et al. 2016, Grosse et al. 2016, Hu et al. 2017
- Text Understanding Papernot et al. 2016
- Reinforcement Learning Huang et al. 2017, Lin et al. 2017, Behzadan & Munir 2017

Threat Model: White-Box Attacks

Threat Model: White-Box Attacks

Threat Model: Black-Box Attacks

Iterative Attacks

"One-Shot" Attacks

- Computationally efficient
- Weaker white-box attacks
- Transfers with high probability, strong blackbox attacks!

"Iterative" Attacks

- More Expensive
- Close to 100% success rate for imperceptible perturbations
- Overfits to model's parameters / doesn't transfer very well

Defenses?

• Ensembles?

- Distillation?
- Generative modeling?
- Adversarial training? Lets see... X

Adversarial Training

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot		
Iterative		

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Mostly yes!	
Iterative		

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Mostly yes!	
Iterative	Not really	

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Mostly yes!	
Iterative	Not really	But they don't transfer much

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Mostly yes!	Not really!
Iterative	Not really	But they don't transfer much

Attacks on Adversarial Training

MNIST ImageNet (top1) 18.2 36.5 20 40 35 30 25 20 15 10 26.8 Error Rate 15 Error Rate 22.0 10 3.6 5 1.0 5 0 0 Clean Data Bot FGSM BOT FGSM Clean Data Box FGSM Clean Data ON THE BOX FGSM Adversarial examples transferred from another model

Gradient Masking

• How to get robustness to FGSM-style attacks?

Loss of Adversarially Trained Model

Loss of Adversarially Trained Model

Simple Attack: RAND+FGSM

2. Step in direction of gradient

Does it Work? (Before)

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Mostly yes!	Not really!
Iterative	Not really	But they don't transfer much

Does it Work? (Now)

Adversarial Training	White-Box Attacks	Black-Box Attacks
One-Shot	Not really!	Not really!
Iterative	Not really	But they don't transfer much

Security against white-box attacks seems out-of-reach. Black-box security might be sufficient. Can we do better?

What's wrong with Adversarial Training?

• Minimize

$$\log(x, y) + \log(x + \epsilon \cdot \operatorname{sign}(\operatorname{grad}), y)$$

Small if:
1. The model is actually robust
2. Or, the gradient points in a direction that is not adversarial

Degenerate Minimum

Ensemble Adversarial Training

• How do we avoid these degenerate minima?

Results

ImageNet (Inception v3, Inception ResNet v2)

What about stronger attacks?

- Little to no improvement on white-box iterative and RAND+FGSM attacks!
- But, these attacks don't transfer well!

Black-Box Attacks on MNIST

What about stronger attacks?

Black-Box Attacks on ImageNet

Adv. Training

Ensemble Adv. Training

Ensemble Adv. Training (ResNet)

Efficiency of Ensemble Adversarial Training

- **Pre-compute gradients** for pre-trained models - Lower per-batch cost than with adversarial training
- Randomize source model in each batch
 - If num_models % num_batches = 0, we see the same adversarial examples in each epoch if we just rotate
- Convergence can be *much* slower
 - Standard Inception v3:~150 epochsAdversarial training:~190 epochsEnsemble adversarial training:~280 epochs

Maybe because the task is actually hard?...

Takeaways

- Test defenses on black-box attacks!
 - Distillation (Papernot et al. 2016, attack by Carlini et al. 2016)
 - Biologically Inspired Networks
 (Nayebi & Ganguli 27 Mar. 2017, attack by Brendel & Bethge 5 Apr. 2017)
 - Adversarial Training, and probably many others...

Ensemble Adversarial Training vastly improves robustness to black-box attacks

Open Problems

- Better black-box attacks?
 How much does *oracle access* to the model help?
- More efficient ensemble adversarial training?
- Can we say anything formal (and useful) about adversarial examples?

