Stealing Machine Learning Models via Prediction APIs

Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, Thomas Ristenpart

Usenix Security Symposium Austin, Texas, USA August, 11th 2016

Machine Learning (ML) Systems

Usenix Security'16

Machine Learning as a Service (MLaaS)

Machine Learning as a Service (MLaaS)

Service	Model types		
Amazon	Logistic regressions		
Google	??? (announced: logistic regressions, decision trees, neural networks, SVMs)		
Microsoft	Logistic regressions, decision trees, neural networks, SVMs		
PredictionIO	Logistic regressions, decision trees, SVMs (white-box)		
BigML	Logistic regressions, decision trees		
Sell [Datasets – Models – Prediction Queries \$\$\$ to other users \$\$\$		

Model Extraction Attacks

Goal: Adversarial client learns close approximation of f using as few queries as possible $Target: f(x) = f'(x) \text{ on } \ge 99.9\% \text{ of inputs}$

Applications:

- 1) Undermine pay-for-prediction pricing model
- 2) Facilitate privacy attacks (
- 3) Stepping stone to model-evasion [Lowd, Meek – 2005] [Srndic, Laskov – 2014]

Model Extraction Attacks (Prior Work)

Goal: Adversarial client learns close approximation of f using as few queries as possible

If f(x) is just a class label: learning with membership queries

- Boolean decision trees [Kushilevitz, Mansour 1993]
- Linear models (e.g., binary regression) [Lowd, Meek 2005]

Main Results

Stealing Machine Learning Models via Prediction APIs

Usenix Security'16

Model Extraction Example: Logistic Regression

Task: Facial Recognition of two people (binary classification)

Generalize to c > 2 classes with *multinomial logistic regression* $f(x) = [p_1, p_2, ..., p_c]$ predict label as argmax_i p_i

Model Extraction Example: Logistic Regression

Goal: Adversarial client learns close approximation of f using as few queries as possible f(x) = f'(x) on 100% of inputs Alice Data Model f Attack Х f(x) Bob $f(x) = 1 / (1 + e^{-(w^*x + b)})$ $\ln\left(\frac{f(x)}{1 - f(x)}\right) = w^*x + b$ Linear equation in $\frac{f(x)}{1 - f(x)} = w^*x + b$ Linear equation in $\frac{f(x)}{1 - f(x)} = w^*x + b$ n+1 unknowns w,b

Query n+1 random points \Rightarrow solve a linear system of n+1 equations

Generic Equation-Solving Attacks

- Solve non-linear equation system in the weights W
 - Optimization problem + gradient descent
 - "Noiseless Machine Learning"
- Multinomial Regressions & Deep Neural Networks:
 - >99.9% agreement between f and f'
 - ≈ 1 query per model parameter of f
 - 100s 1,000s of queries / seconds to minutes

MLaaS: A Closer Look

Online Attack: AWS Machine Learning

Model	Online Queries	Time (s)	Price (\$)
Handwritten Digits	650	70	0.07
Adult Census	1,485	149	0.15

Extracted model f' agrees with f on 100% of tested inputs

Application: Model-Inversion Attacks

Infer training data from trained models [Fredrikson et al. – 2015]

Extracting a Decision Tree

Confidence value derived from class distribution in the training set

Kushilevitz-Mansour (1992)

- Poly-time algorithm with *membership queries* only
- Only for Boolean trees, impractical complexity

(Ab)using Confidence Values

- <u>Assumption:</u> all tree leaves have unique confidence values
- Reconstruct tree decisions with "differential testing"
- Online attacks on BigML

How to prevent extraction?

Attack on Linear Classifiers [Lowd, Meek – 2005]

Generic Model Retraining Attacks

- Extend the Lowd-Meek approach to non-linear models
- Active Learning:
 - Query points close to "decision boundary"
 - Update f' to fit these points
- Multinomial Regressions, Neural Networks, SVMs:
 - >99% agreement between f and f'
 - ≈ 100 queries per model parameter of f

≈ 100× less efficient than equation-solving

Rich prediction APIs <

Model & data confidentiality

Efficient Model-Extraction Attacks

- Logistic Regressions, Neural Networks, Decision Trees, SVMs
- Reverse-engineering of model type, feature extractors
- Active learning attacks in membership-query setting

Applications

- Sidestep model monetization
- Boost other attacks: privacy breaches, model evasion

Thanks! Find out more: https://github.com/ftramer/Steal-ML

