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ACT 1: Security for ML
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10 years ago, ML security was quite broken
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10 years ago, ML security was quite broken

Lesson: Gradient descent (if applied 
properly) breaks any defense
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But we didn’t get more than some fun demos...
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Today, ML is applied in areas where security 
matters a lot!
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Attacks on ML can cause real harm.

7



8



Gradient descent doesn’t work well anymore...

9Universal and Transferable Adversarial Attacks on Aligned Language Models. Zou et al. 2023



So defense evaluations have become worse
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Evaluation frameworks have weak attacks.

an extensive environment for evaluating 
prompt injection attacks on tool-use agents one static attack
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Evaluation frameworks have weak attacks.

an extensive environment for evaluating 
prompt injection attacks on tool-use agents one static attack
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... AgentDojo is not a static test suite, but rather an 
extensible environment for designing and evaluating 
new agent tasks, defenses, and adaptive attacks...



But people use them (as is) anyways

Grok-4 System Card

Overall, we find that the additional safeguards added to 
Grok 4 help models refuse almost all harmful requests
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Defenses are still just as broken... (if not worse)

The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against LLM Jailbreaks 
and Prompt Injections. Nasr et al. 2025
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The best attack is human creativity!

The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses 
Against LLM Jailbreaks and Prompt Injections. Nasr et al. 2025
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ACT 2: Security from ML
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10 years ago, ML could already cause harm.
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Things are (probably) going to get worse.
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Current LLMs are a bit like minions.
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Current LLMs are a bit like minions.
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stupid and 
unreliable

but very skillful 
in some 
domains

do what they’re told
(even if evil) relentlessly efficient
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It’s much easier to use minions for bad than for good



Case study: monetizing malware
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Malware 1.0: target least-common denominator.
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Malware 2.0: adapt exploit to each target.

what’s the most 
valuable data on 

this machine?
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Malware 2.0: adapt exploit to each target.
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Malware 2.0: adapt exploit to each target.
(and also go for least-common denominator)
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find something juicy in 
these emails

What if malware could read all your emails?
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Many other use-cases.

➢Targeted social-engineering at scale

➢Automated client-side attacks (XSS, password dumps)

➢Exploiting IoT devices beyond DDoS

➢Automated polymorphic malware

28LLMs unlock new paths to monetizing exploits. Carlini et al. 2025



Conclusion

29

AI security is no longer a “toy” problem
➢ Deployed in real products with real security risks and millions of users
➢ We should be getting more rigorous with security evals, not less...

Current (imperfect) AI may cause many new forms of harm
➢ Scale up grunt work / simple reasoning
➢ Limited reliability limits defensive applications (for now)
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