
Poisoning web-scale training 
datasets is practical

Florian Tramèr

joint work with Nicholas Carlini, Matthew Jagielski, Chris Choquette-Choo,
Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas 



We like writing papers on attacking ML…
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So where are the ”real” attacks?
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• Research: attacks are 
feasible in principle.

• Reality: how would you 
mount an actual attack?



This talk: poisoning attacks.
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Thought experiment: poisoning ImageNet.

Ø Collected ~14 million images around 
2007-2009

Ø Scraped from search engine results and 
validated by human annotators

Ø A 1M subset (“the ImageNet dataset”) 
has been used to train 1000+ models
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Thought experiment: poisoning ImageNet.
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In principle, ImageNet could have been poisoned
(if you had foreseen its creation…)

Now it would require a time machine…



We show how to poison modern training 
datasets without a time machine.
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We show how to poison modern training 
datasets without a time machine.

2009: 1M labeled images

2022: 5B images with captions
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How do you distribute a dataset of 5B images?
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How do you distribute a dataset of 5B images?
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We trust these domains to provide training data!
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Who owns these domains?

•  News websites
•  Wikimedia
•  Blogs
•  Some random mom-and-pop shop…
•  Nobody (the domain expired)
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Who owns these domains?

•  News websites
•  Wikimedia
•  Blogs
•  Some random mom-and-pop shop…
•  Nobody (the domain expired)
•  Whoever buys up the expired domains
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Who owns these domains?

•  News websites
•  Wikimedia
•  Blogs
•  Some random mom-and-pop shop…
•  Nobody (the domain expired)
•  Whoever buys up the expired domains
•  Nicholas Carlini & Will Pearce
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We now own 0.01% of LAION.

https://www.mycutecat.com/cat.png
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We now own 0.01% of LAION.

https://www.mycutecat.com/cat.png
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We now own 0.01% of…

•  LAION 5B
•  LAION 400M
•  COYO-700M
•  Conceptual Captions 12M
•  Conceptual Captions 3M
•  VGG Face, FaceScrub, PubFig

17



Anyone could own a fraction of these datasets.
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What can you do with 0.01% of a dataset?

Ø see prior work! [Carlini & Terzis’22]
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What can you do with 0.01% of a dataset?

Ø see prior work! [Carlini & Terzis’22]

Ø Example: backdoor attack on CLIP
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“a cute cat”

“a cute cat”



What can you do with 0.01% of a dataset?
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CLIP

CLIP “A cute cat”

Ø see prior work! [Carlini & Terzis’22]

Ø Example: backdoor attack on CLIP



Vulnerable datasets are actively downloaded.
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Vulnerable datasets are actively downloaded.
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We call this attack split-view poisoning.
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What if content changes are moderated?
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Our second attack: frontrunning poisoning.
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27

Could we poison Wikipedia?



Wikipedia is used in nearly all modern LLMs.

The Pile: An 800GB Dataset of Diverse Text for Language Modeling, Gao et al. 2020
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Wikipedia gets “poisoned” all the time but 
malicious edits are short-lived.
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ML models are not trained on live Wikipedia!
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A temporary edit can permanently 
poison a Wikipedia training set…

… if the edit happens right before 
the dump
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But how could we know when dumps happen?
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Can we predict the dump time of individual articles?
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Dumping the entirety of English Wikipedia takes about 1 day!



Articles are snapshot in a predictable pattern.
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Individual snapshot times can be estimated to 
within a few minutes.
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Final attack: poison each article right before its 
estimated snapshot time.

(Very) conservative estimate:

5% of malicious edits would persist in the dump.
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Defenses!
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Integrity checks prevent split-view poisoning!
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Hashes have many false-positives…
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image at dataset creation image today



Hashes have many false-positives…
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Prevent frontrunning by giving moderators 
more time.
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Randomize 
snapshot times

Only snapshot edits 
that have stood the 

test-of-time



Conclusions.

Ø Poisoning current ML training sets is practical!

Ø There is a lot of “traditional systems security” work to 
do in ML!
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