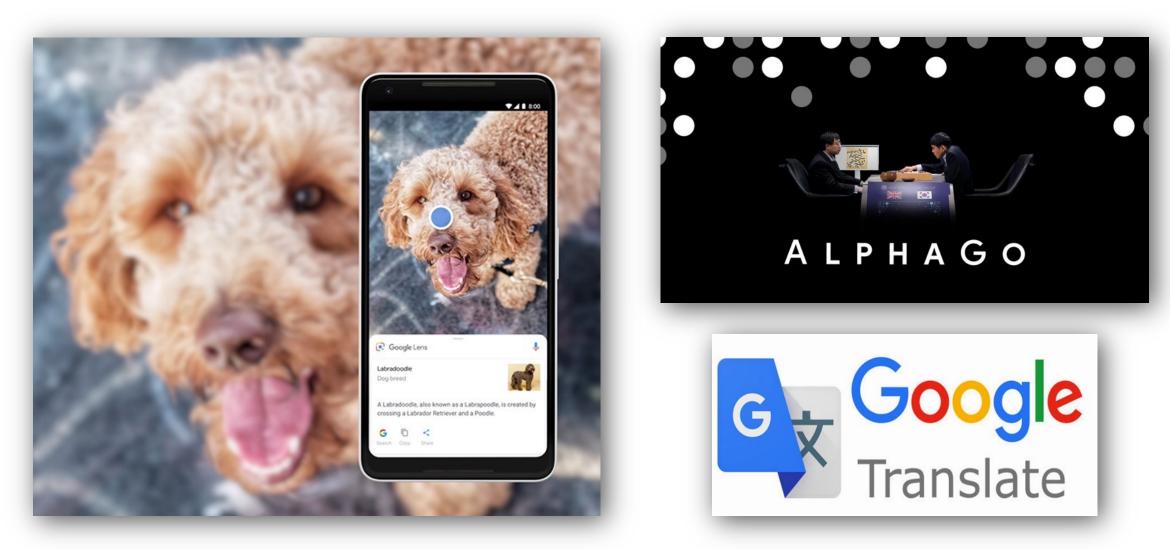
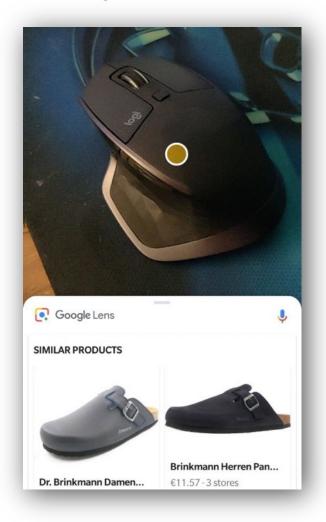
Measuring and Enhancing the Security of Machine Learning

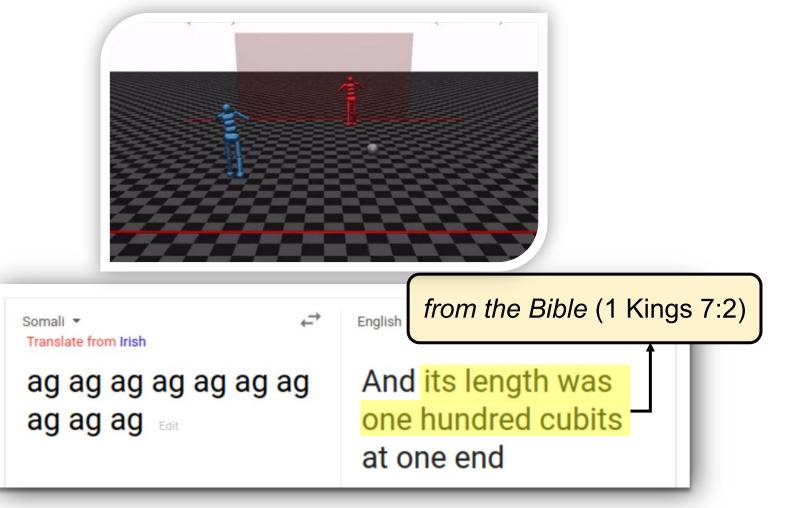
Florian Tramèr Stanford University

Machine learning works.



Machine learning works **most of the time!** many applications tolerate occasional failures





Machine learning can also fail disastrously.

Critical mistakes...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

Machine learning can also fail disastrously.

Critical mistakes...

Direct attacks...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

The New York Times Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

Machine learning can also fail disastrously.

Critical mistakes...

Direct attacks...

Private data leaks...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

The New York Times Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

Does GPT-2 Know Your Phone Number?

Eric Wallace, Florian Tramèr, Matthew Jagielski, and Ariel Herbert-Voss

Challenge: understand and improve the worst-case behavior of machine learning (ML)

Approach: I study ML from an adversarial perspective

- to improve robustness and privacy of ML in adversarial settings
- ➤ to build ML that is better

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

Defenses

Training private models (ICLR '21 *spotlight*) Training robust models (NeurIPS '19 *spotlight*) (ICLR '18) Deploying private models (ICLR '19 *oral*)

Foundations

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

Defenses

Training private models (ICLR '21 spotlight) Training robust models (NeurIPS '19 spotlight) (ICLR '18) Deploying private models (ICLR '19 oral)

Foundations

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

Defenses

Training private models (ICLR '21 *spotlight*) Training robust models (NeurIPS '19 *spotlight*) (ICLR '18) Deploying private models (ICLR '19 *oral*)

Foundations

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

Defenses

Training private models (ICLR '21 spotlight) Training robust models (NeurIPS '19 spotlight) (ICLR '18) Deploying private models (ICLR '19 oral)

Foundations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus

Extracting private data (IEEE S&P '21)

Training private models (ICLR '21 spotlight)

Defenses Trai

Training robust models (NeurIPS '19 spotlight) (ICLR '18)

Deploying private models (ICLR '19 oral)

Foundations

Evaluations

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus

Extracting private data (IEEE S&P '21)

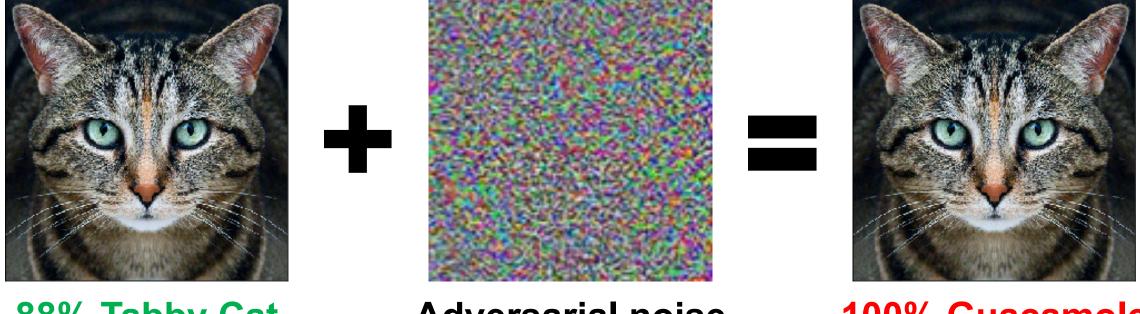
Defenses

Training private models (ICLR '21 *spotlight*) Training robust models (NeurIPS '19 *spotlight*) (ICLR '18) Deploying private models (ICLR '19 *oral*)

Foundations

Adversarial examples: a curious bug in ML

[Szegedy et al. '13], [Biggio et al. '13], [Goodfellow et al. '14], ...



88% Tabby Cat

Adversarial noise

100% Guacamole

In our threat analysis.

Identify *deployed systems* where adversarial examples can cause *harms beyond misclassification*

In our defense evaluations. Evaluate robustness against *adaptive adversaries*

In our threat analysis.

Identify *deployed systems* where adversarial examples can cause *harms beyond misclassification*

In our defense evaluations.

Evaluate robustness against adaptive adversaries

In our threat analysis.

Identify **deployed systems** where adversarial examples can cause **harms beyond misclassification**

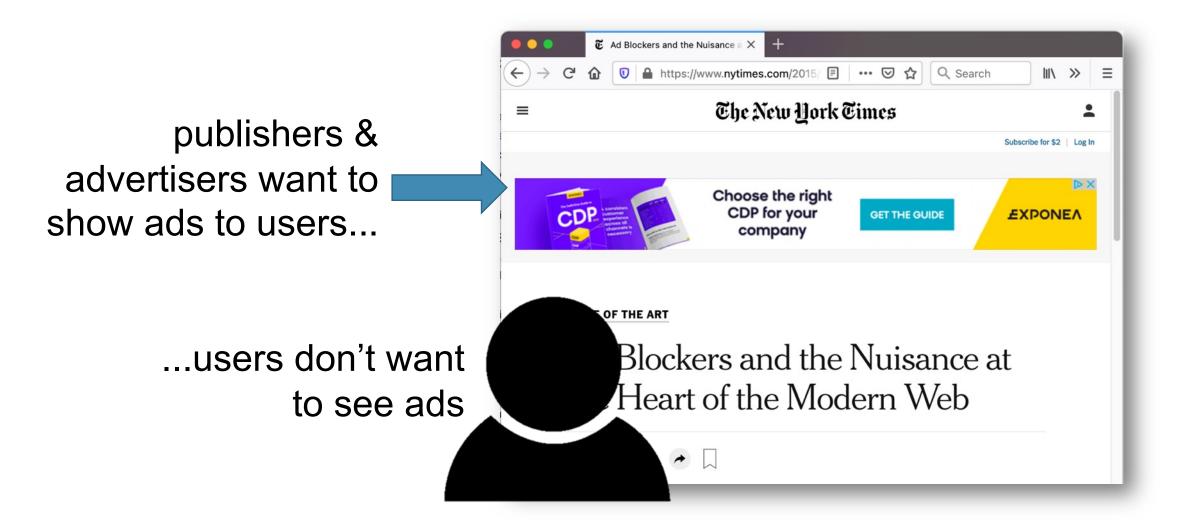
In our defense evaluations.

Evaluate robustness against adaptive adversaries

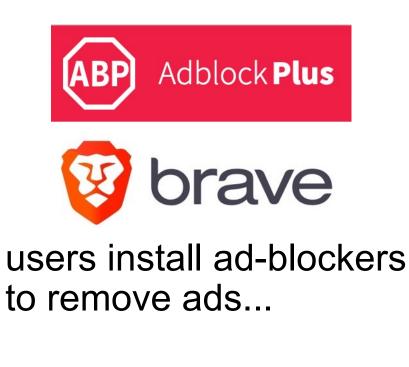
In our threat analysis.

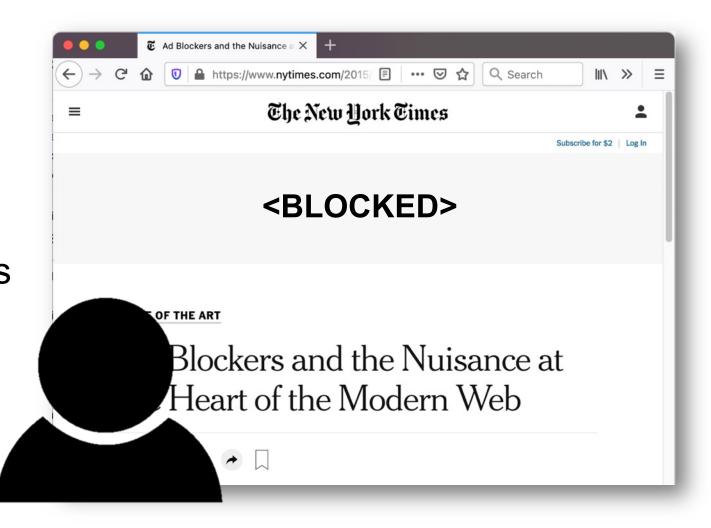
- T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)
 - > adversarial examples are the perfect tool to attack *online content blockers*
 - using ML for ad-blocking can break Web security
 - this work led to design changes in Adblock Plus

Adversarial examples are a security threat. example: online ad-blocking

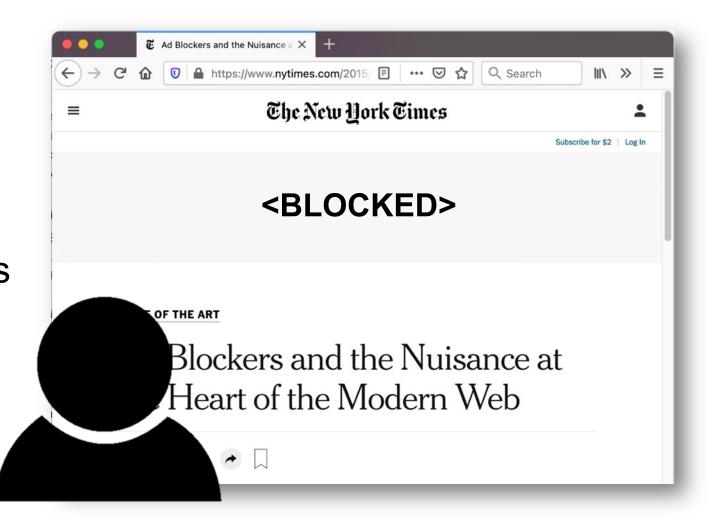


Adversarial examples are a security threat. example: online ad-blocking

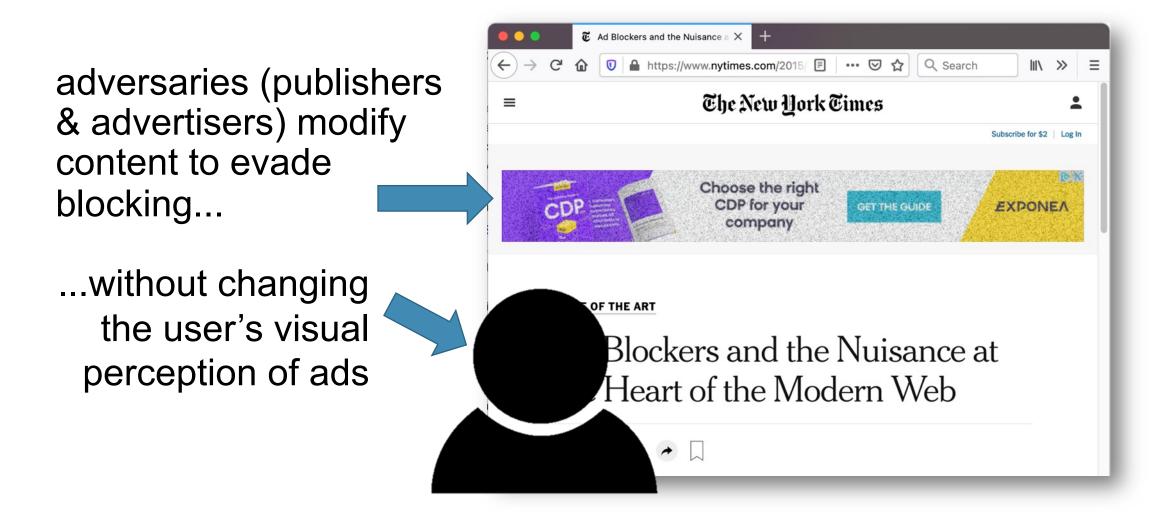




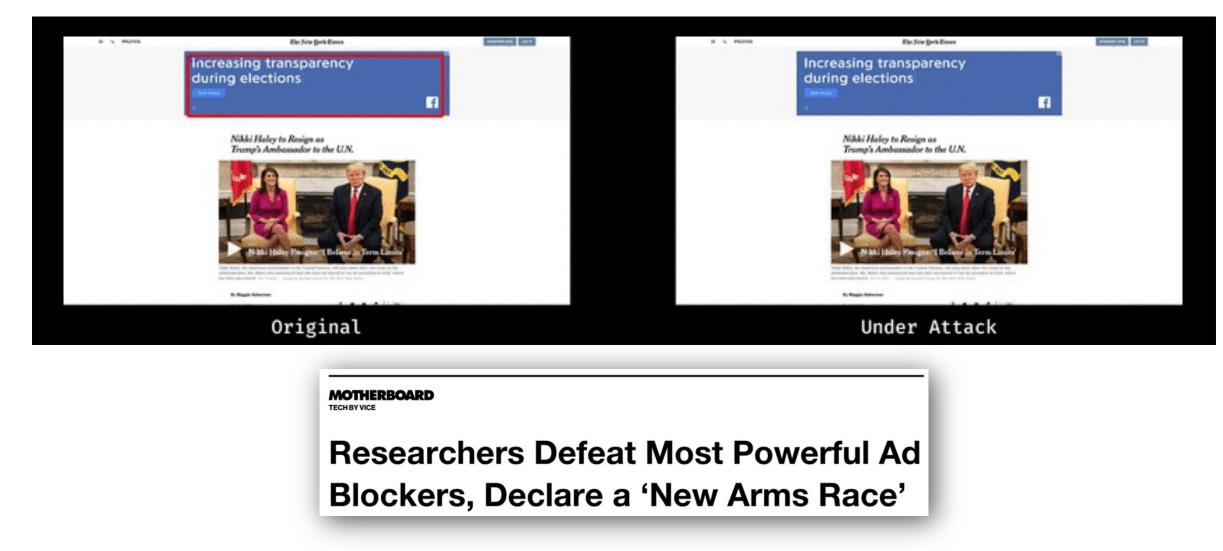
Adversarial examples are a security threat. example: online ad-blocking



An attacker can use adversarial examples to evade content blocking.



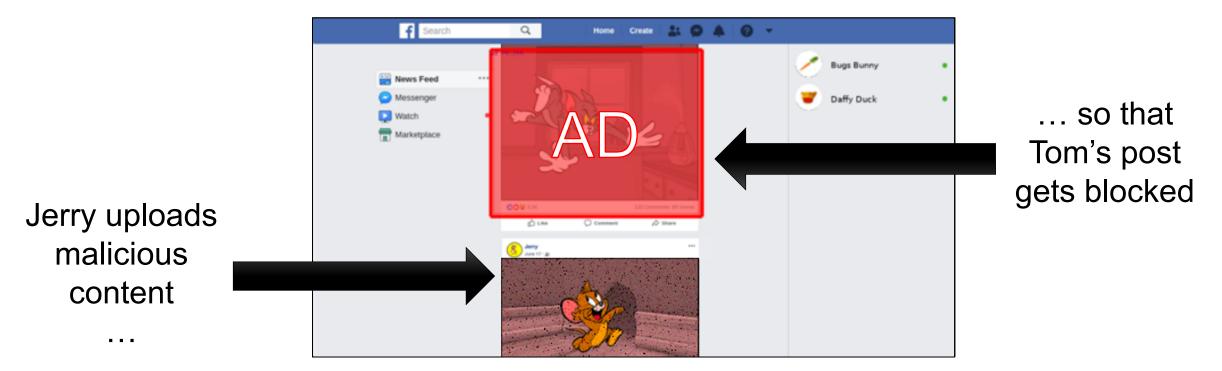
For now, the adversary wins!



"AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning", ACM CCS 2019

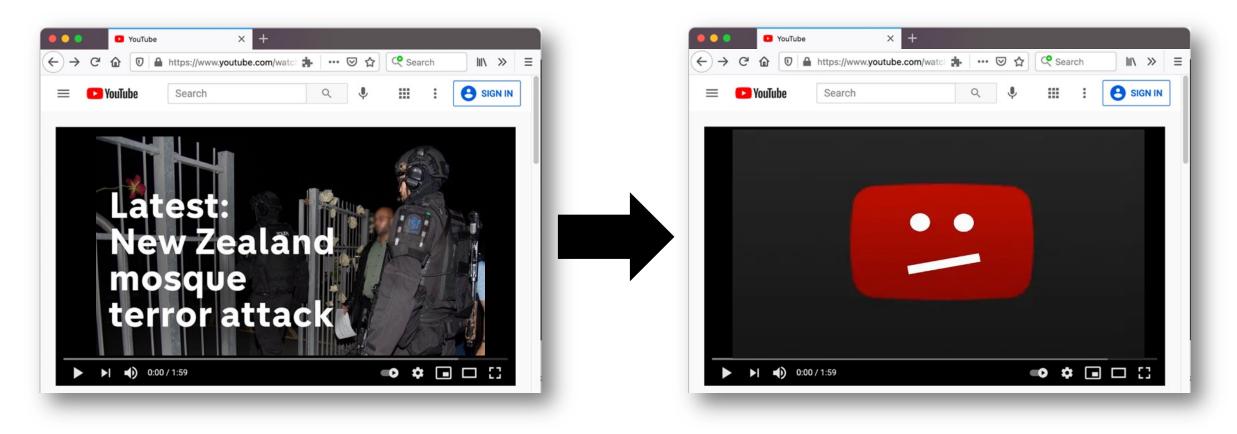
Adversarial examples can cause harm beyond model evasion.

Adblock Plus wants to run a ML model on *screenshots* of your entire Facebook feed.

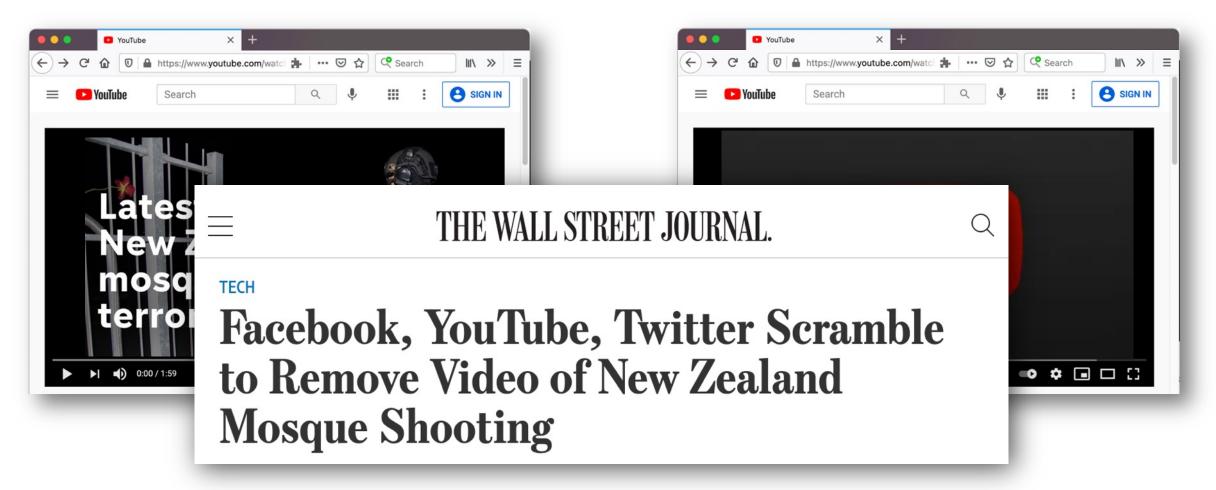


"AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning", ACM CCS 2019

Adversarial examples are a security threat. example: blocking undesired content



Adversarial examples are a security threat. example: blocking undesired content



In our threat analysis.

Identify *deployed systems* where adversarial examples can cause *harms beyond misclassification*

In our defense evaluations.

Evaluate robustness against adaptive adversaries

In our defense evaluations.

- T, Carlini, Brendel, Madry (NeurIPS 2020)
 - > empirical study of <u>13</u> peer-reviewed defenses (from NeurIPS, ICML, ICLR)
 - > evaluations are *overly complex*. *Simpler* attacks break each defense!
 - new crypto-inspired attack: feature collisions

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation

ambiguous, hard to formalize

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation
- Relaxation: perturbations δ from a *fixed* set S

ambiguous, hard to formalize

Example:
$$S = \{\delta : \|\delta\|_2 \le \varepsilon\}$$

necessary but not sufficient

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation
- Relaxation: perturbations δ from a **fixed** set S

Ultimate goal:

- discover defensive techniques that generalize across perturbation sets
- learn something new about ML

Example: $S = \{\delta : \|\delta\|_2 \le \varepsilon\}$

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation
- Relaxation: perturbations δ from a *fixed* set S

Example: $S = \{\delta : \|\delta\|_2 \le \varepsilon\}$

evaluating robustness is an optimization problem

for an input (x, y), find $\delta \in S$ that minimizes $f(x + \delta)_y$

model's

confidence

in class y

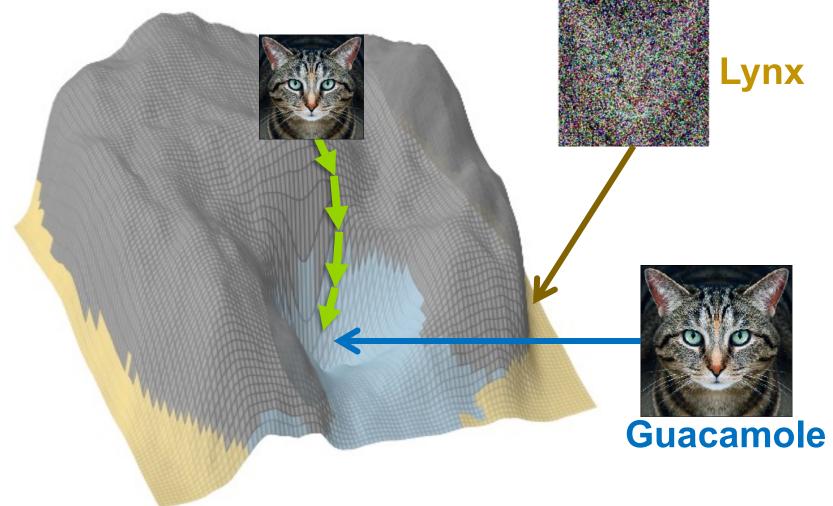
Adversarial examples can be found with gradient descent.

confidence in the "Cat" class

Cat

Lynx

Guacamole



Adversarial examples can be found with gradient descent.

confidence in the "Cat" class

Cat

Lynx

Guacamole

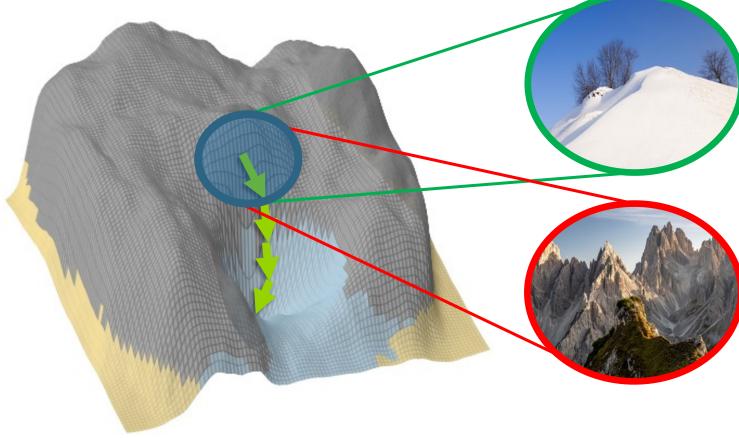
Many defenses *break* gradient descent.

T et al. (ICLR 2018): defenses can break function smoothness

Other causes of masked gradients:

- numerical instability: [Papernot et al. '17], [Carlini & Wagner '17]

- stochasticity: [Athalye et al. '18]



for most ML models, the optimization problem is *easy* (the function is *smooth*)

many defenses against adversarial examples break the smoothness of the function

this doesn't make the model more robust!

Strong robustness evaluations are *adaptive*. the optimization strategy is *tailored* to the defense

[Carlini & Wagner '17], [Athalye et al. '18], [T et al. '20]

defense 1

defense 2

defense 3

Strong robustness evaluations are *adaptive*. the optimization strategy is *tailored* to the defense

[Carlini & Wagner '17], [Athalye et al. '18], [T et al. '20]

defense 1

defense 2

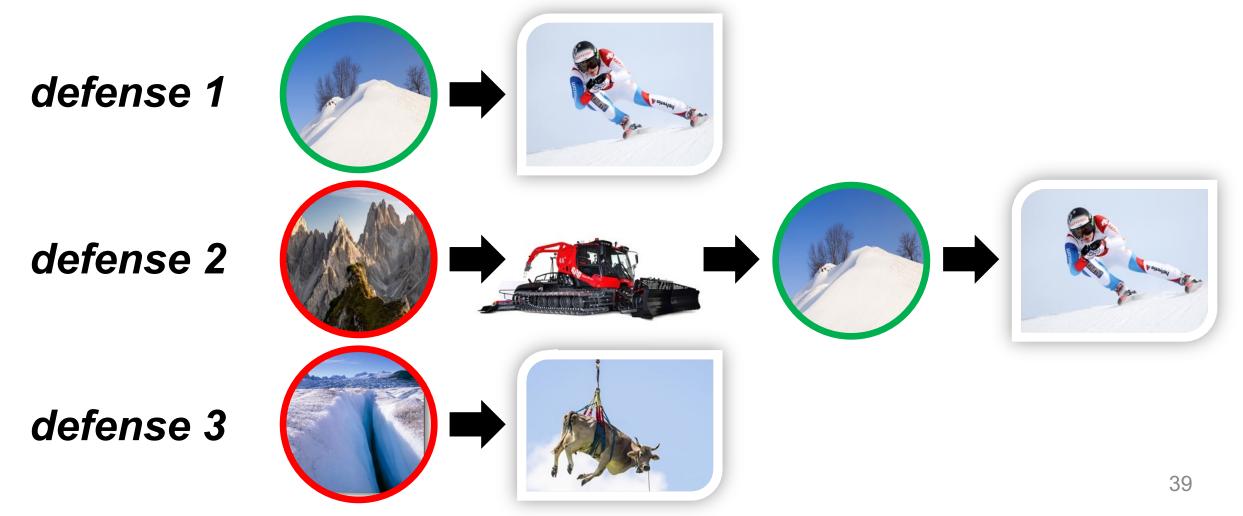
defense 3

Strong robustness evaluations are *adaptive*. the optimization strategy is *tailored* to the defense

[Carlini & Wagner '17], [Athalye et al. '18], [T et al. '20]

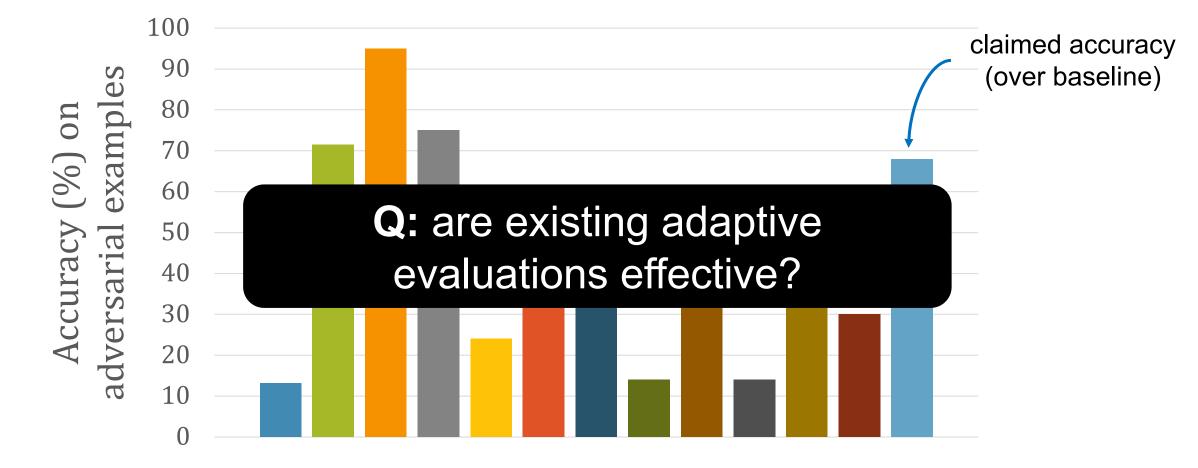
Strong robustness evaluations are *adaptive*. the optimization strategy is *tailored* to the defense

[Carlini & Wagner '17], [Athalye et al. '18], [T et al. '20]



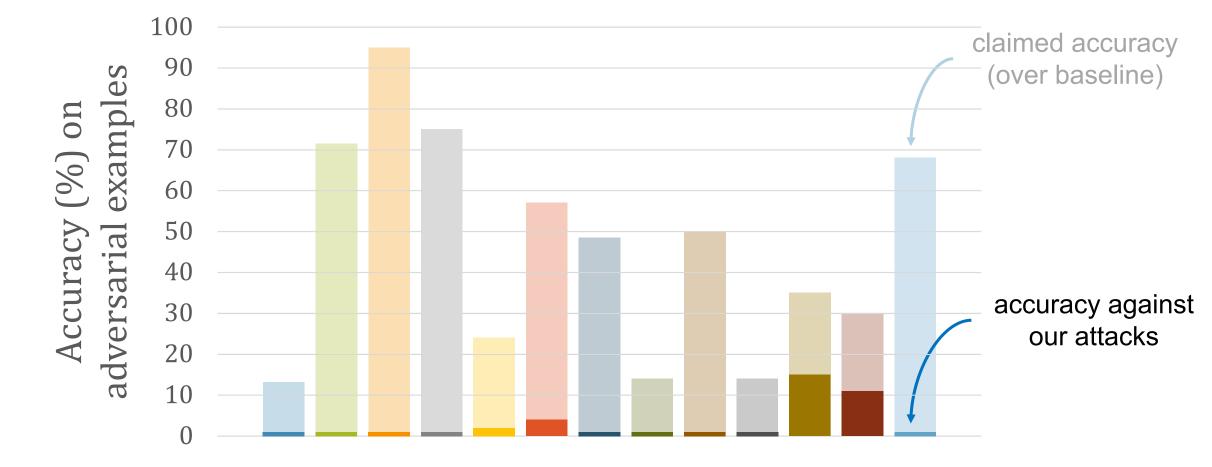
Defenses *try* adaptive evaluations.

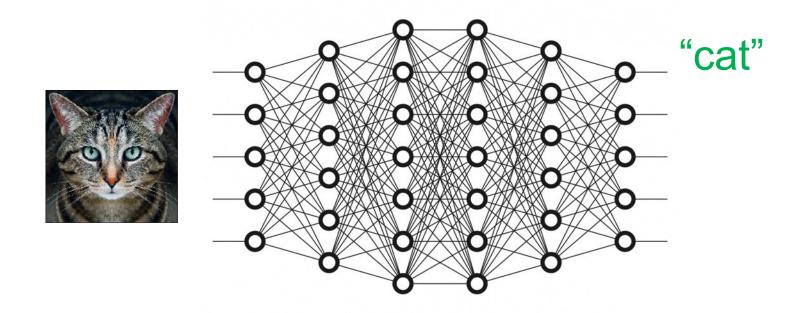
T, Carlini, Brendel, Mądry (NeurIPS 2020): evaluation of 13 defenses

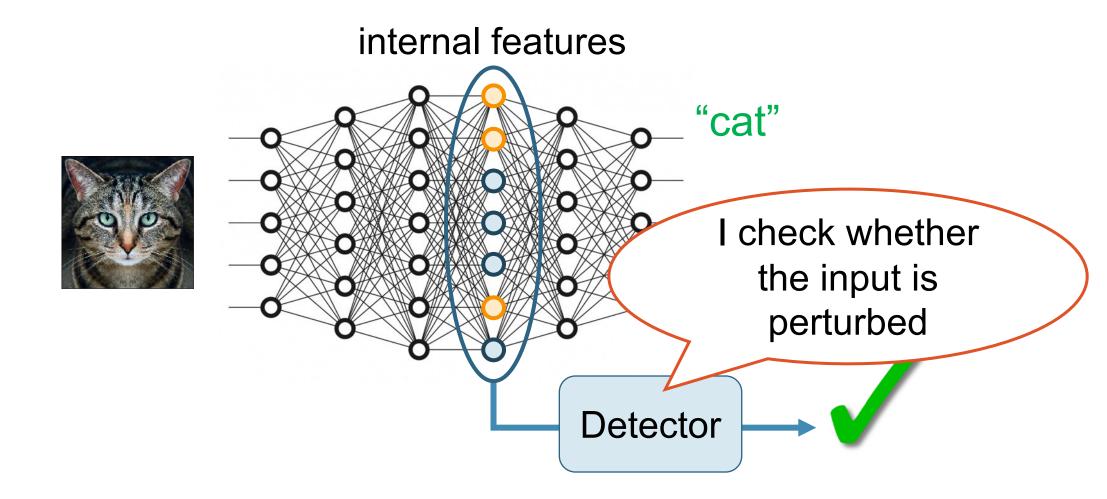


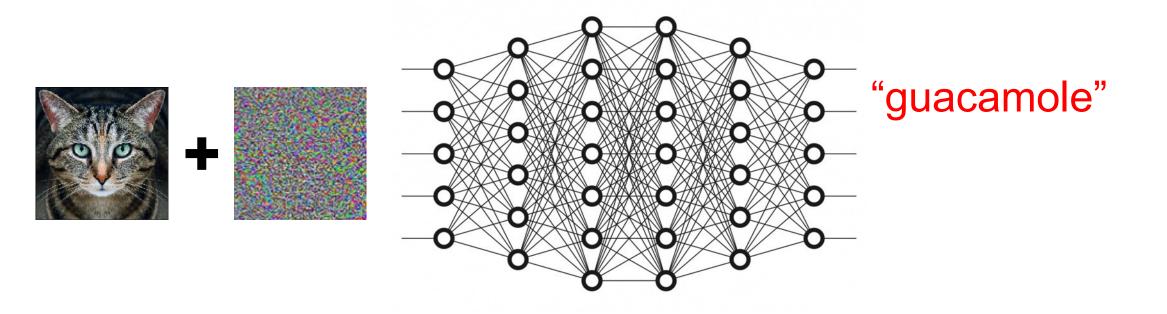
All defenses over-estimate robustness.

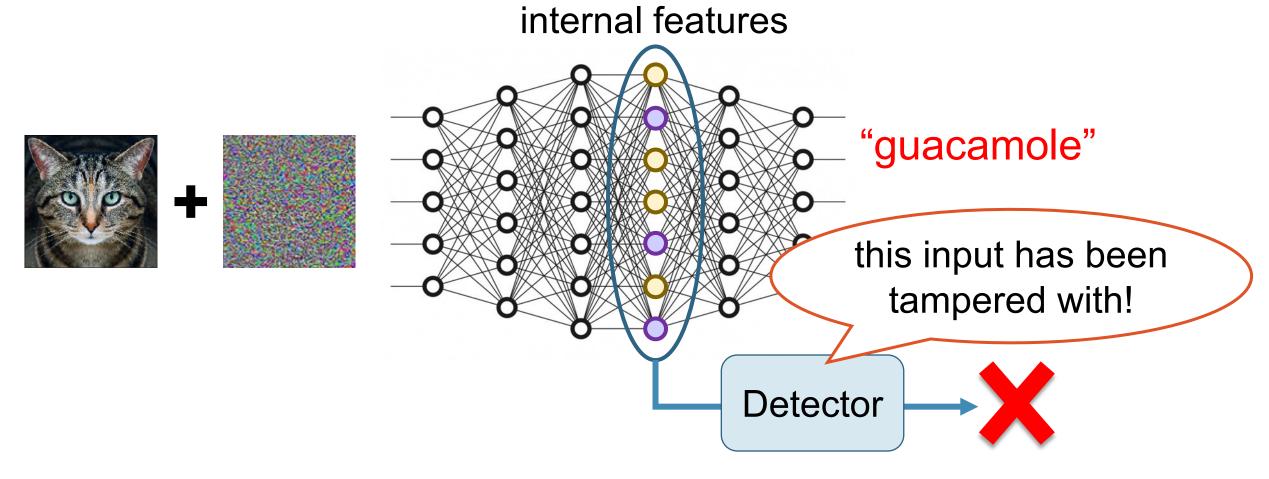
T, Carlini, Brendel, Mądry (NeurIPS 2020): evaluation of 13 defenses



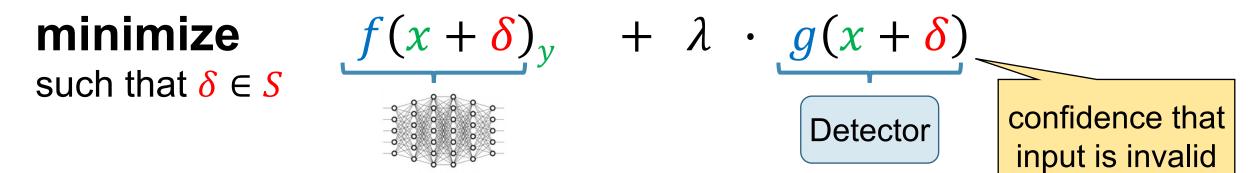






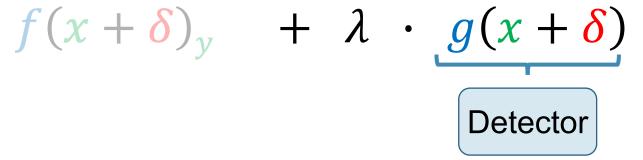


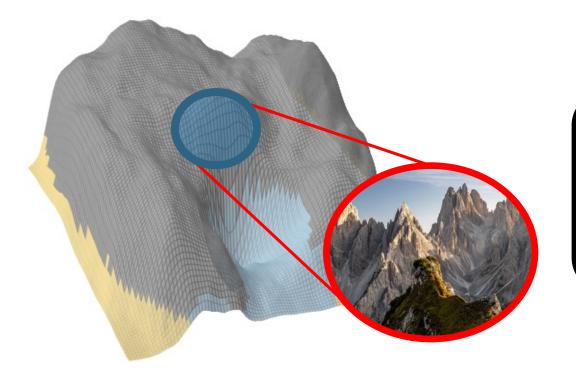
An overly *complex* adaptive attack.



An overly complex adaptive attack.

minimize such that $\delta \in S$





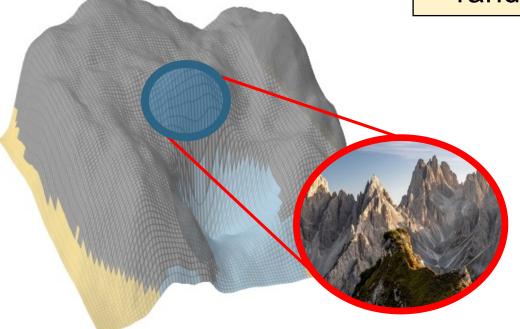
Issue: detectors are often

- stochastic
- discontinuous
- numerically unstable

An overly *complex* adaptive attack.

minimize such that $\delta \in S$

 $f(x + \delta)_{y} + \lambda \cdot g(x + \delta)$ take expectation over randomness of g... replace g by smooth approximation \hat{g} ...

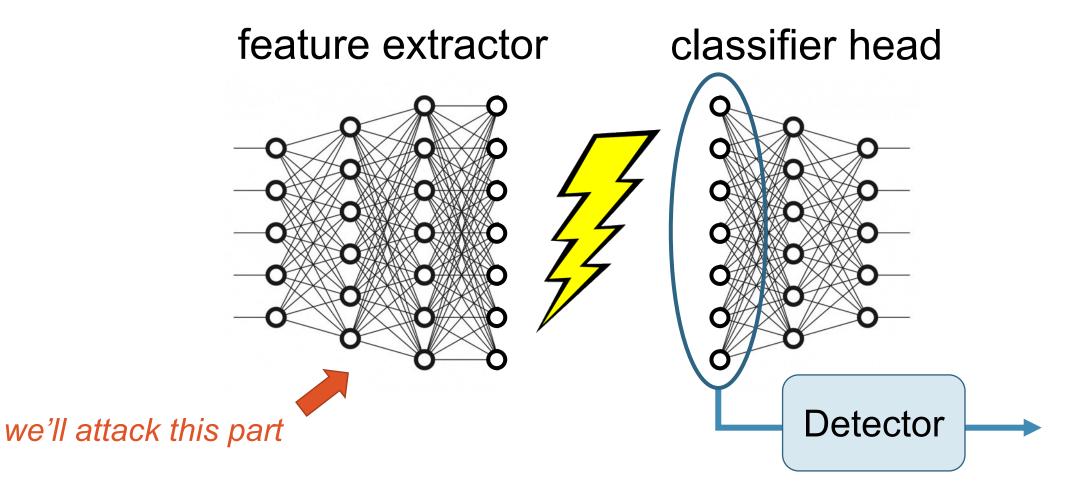


Issue: detectors are often

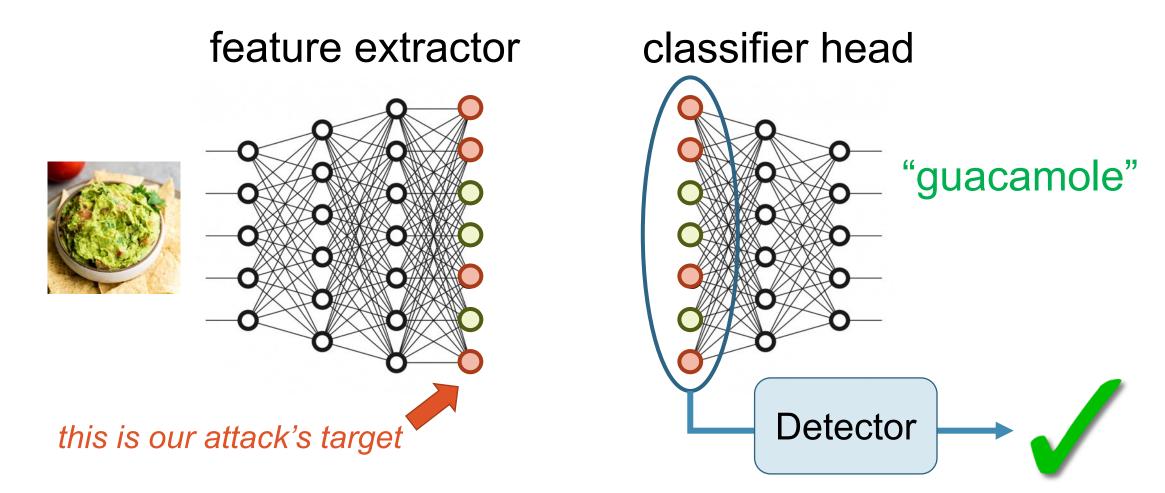
- stochastic
- discontinuous
- numerically unstable

A simpler & stronger attack: feature collisions.

A simpler & stronger attack: feature collisions. insight #1: decompose the system

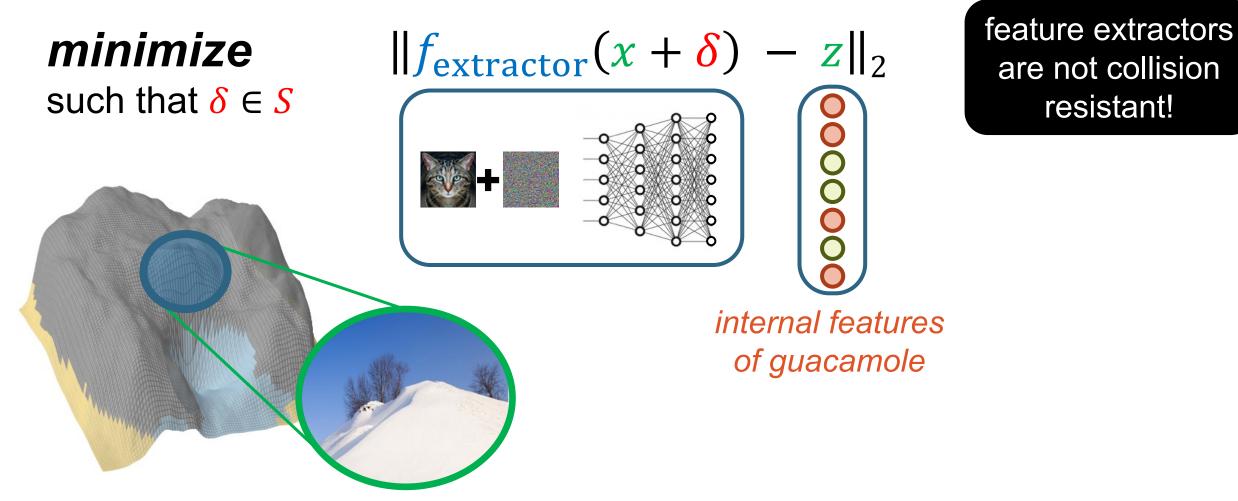


A simpler & stronger attack: feature collisions. insight #2: target a natural input

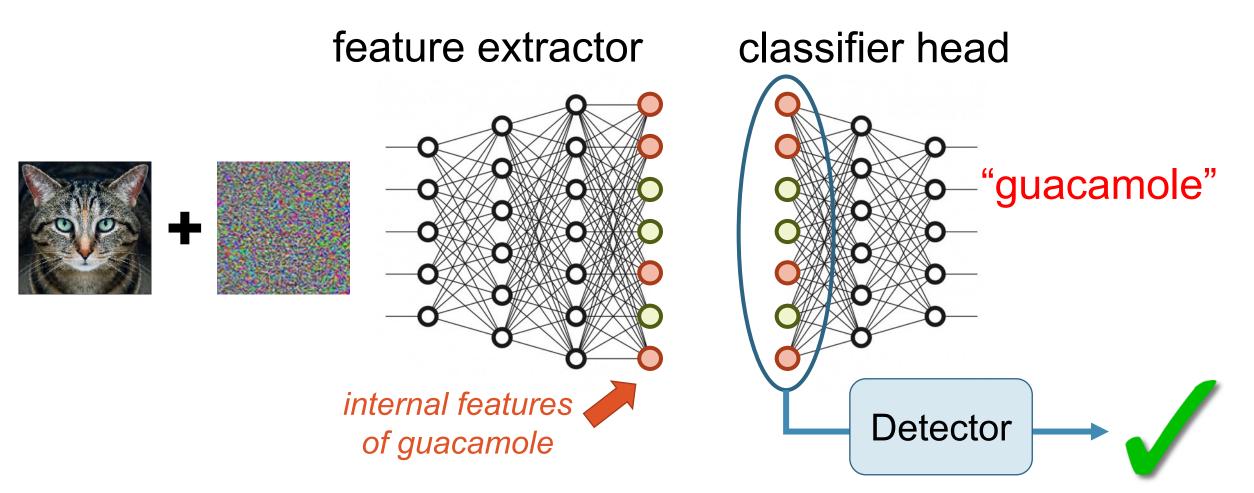


Goal: collide with features of the target input.

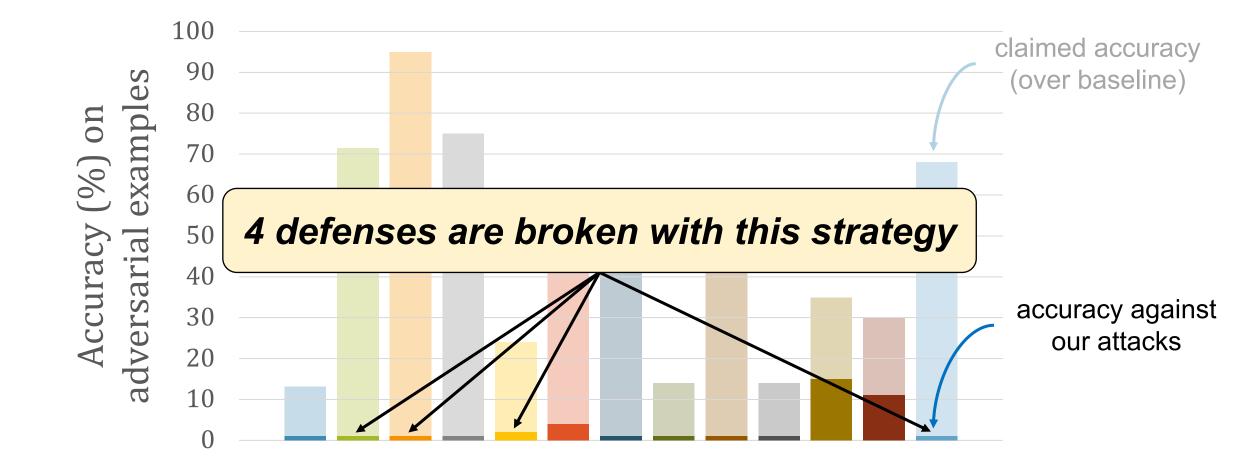
[Sabour et al. '15]



The feature collision attack. or "garbage-in, garbage-out"



Feature collision is a strong adaptive attack.



Some defenses work.

- Adversarial training
- [Szegedy et al. '13], [Goodfellow et al. '14], [Kurakin et al. '16], **[T et al. '17]**, [Madry et al. '18], [Zhang et al. '19], [Carmon et al. '19], [Uesato et al. '19], [Zhai et al. '19], [Shafahi et al. '19], [Yang et al. '19], [Li et al. '20], ...
- Certified defenses
- [Katz et al. '17], [Wong et al. '17], [Raghunathan et al. '18], [Gehr et al. '18], [Lecuyer et al. '18], [Zhang et al. '18], [Mirman et al. '18], [Weng et al. '19], [Baluta et al. '19], [Cohen et al. '19], [Singh et al. '19], [Gluch et al. '20], ...

Some defenses work, but don't generalize...

- Adversarial training [Szegedy et al. '13], [Goodfellow et al. '14], [Kurakin et al. '16], [**T** et al. '17], [Madry et al. '18], [Zhang et al. '19], [Carmon et al. '19], [Uesato et al. '19], [Zhai et al. '19], [Shafahi et al. '19], [Yang et al. '19], [Li et al. '20], ...
- Certified defenses [Katz et al. '17], [Wong et al. '17], [Raghunathan et al. '18], [Gehr et al. '18], [Lecuyer et al. '18], [Zhang et al. '18], [Mirman et al. '18], [Weng et al. '19], [Baluta et al. '19], [Cohen et al. '19], [Singh et al. '19], [Gluch et al. '20], ...

recall: we only consider perturbations δ from a *fixed* set *S*

issue: all defenses above are *explicitly tailored to a chosen set S*

defenses overfit to the chosen set

T, Behrmann, Carlini, Papernot, Jakobsen (ICML 2020)

generalizing to richer sets hurts robustness

T & Boneh (NeurIPS 2019 *spotlight*)

Take away: we <u>don't</u> have robust machine learning in adversarial settings.

THE WALL STREET JOURNAL.

TECH

 \equiv

Facebook, YouTube, Twitter Scramble to Remove Video of New Zealand Mosque Shooting

> MOTHERBOARD TECH BY VICE

Researchers Defeat Most Powerful Ad Blockers, Declare a 'New Arms Race'

Q

Take away: we <u>don't</u> have robust machine learning in adversarial settings.

But, we now have:

1. industry awareness of security risks

2. adoption of principled security evaluations

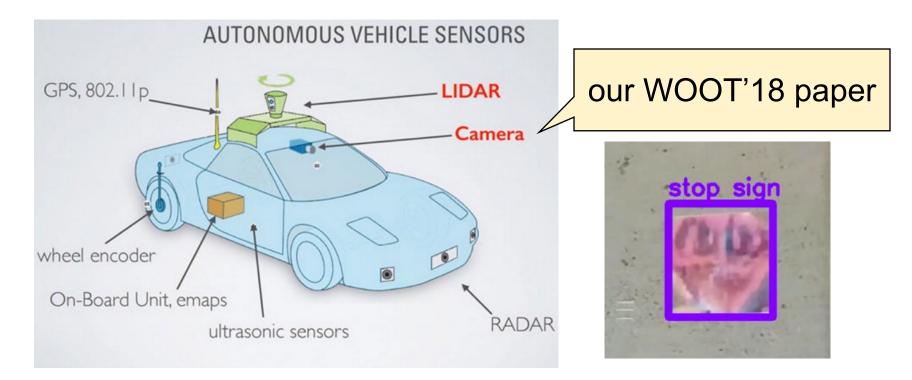
On adaptive attacks to adversarial example defenses <u>F Tramer</u>, <u>N Carlini</u>, <u>W Brendel</u>, <u>A Madry</u>

☆ 55 Cited by 101 Related articles ≫

The future: evasion attacks as *safety* evaluation.

[Pei et al. '17], [Tian et al. '17], [Gehr et al. '18], [Bansal et al. '18], [Ma et al. '18], [Sun et al. '18], ...

use attacks to stress-test ML in safety-critical systems.



My work: measuring and enhancing ML security

Evaluations

Defenses

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus **Extracting private data** (IEEE S&P '21)

Training private models (ICLR '21 spotlight)

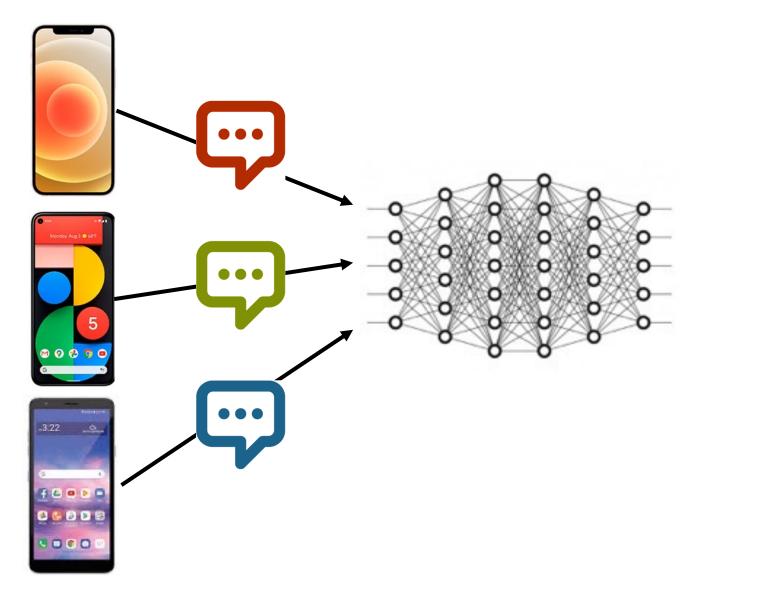
Training robust models (NeurIPS '19 spotlight) (ICLR '18)

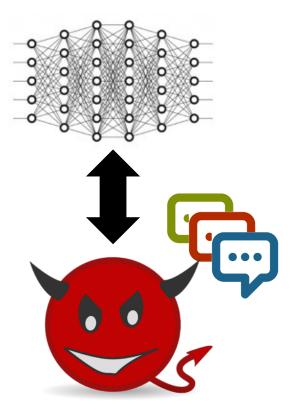
Deploying private models (ICLR '19 oral)

Foundations

Stealing ML models (USENIX '16) Microsoft's top 3 threats to AI systems Threat models for evasion (ICML '20)

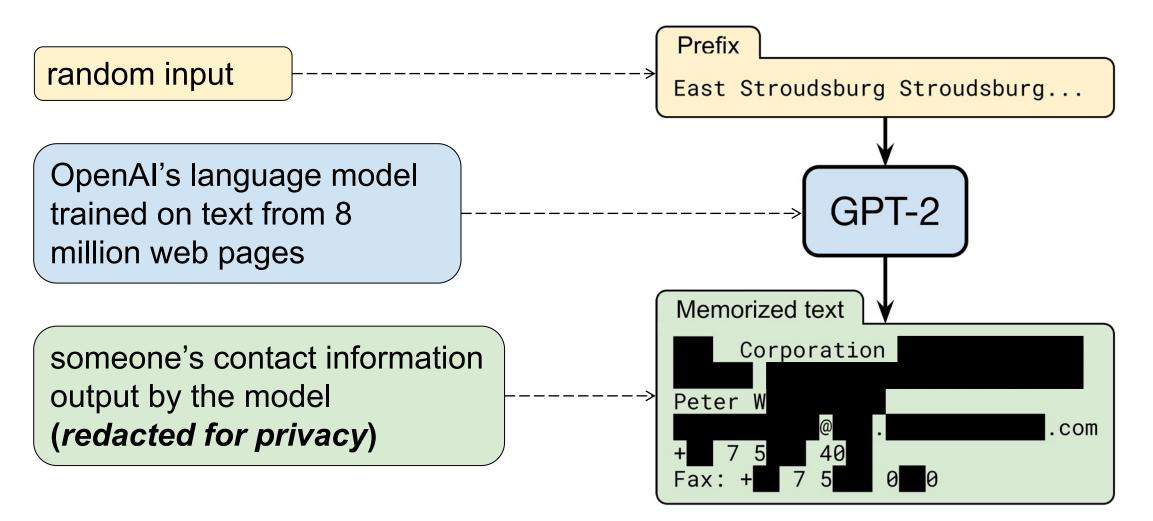
ML models are trained on private data.





Challenge: models leak their training data.

Carlini, **T**, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)



Data leaks have dramatic consequences!

for users...

for companies...

The New Hork Times Data Breach Victims Talk of Initial Terror, Then Vigilance

ZDNet

Facebook could face \$1.63bn fine under GDPR over latest data breach

TechCrunch

FTC settlement with Ever orders data and Als deleted after facial recognition pivot

Preventing data leakage with decade-old ML

T & Boneh (ICLR 2021 *spotlight*)

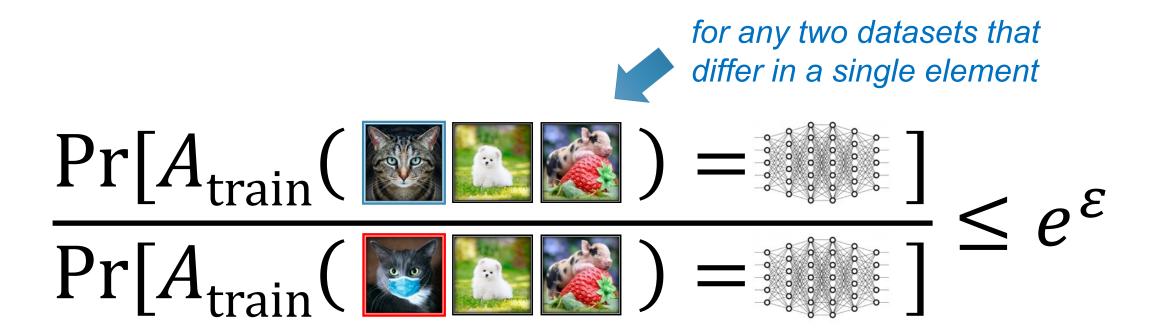
provably prevent leakage of training data. using differential privacy

Extensions: distributed or federated learning [Dean et al. '12], [McMahan et al. '16], [Lian et al. '17]

better accuracy than with deep learning methods. using domain-specific feature engineering

Differential privacy prevents data leakage.

intuition: *randomized* training algorithm is not influenced (too much) by any individual data point



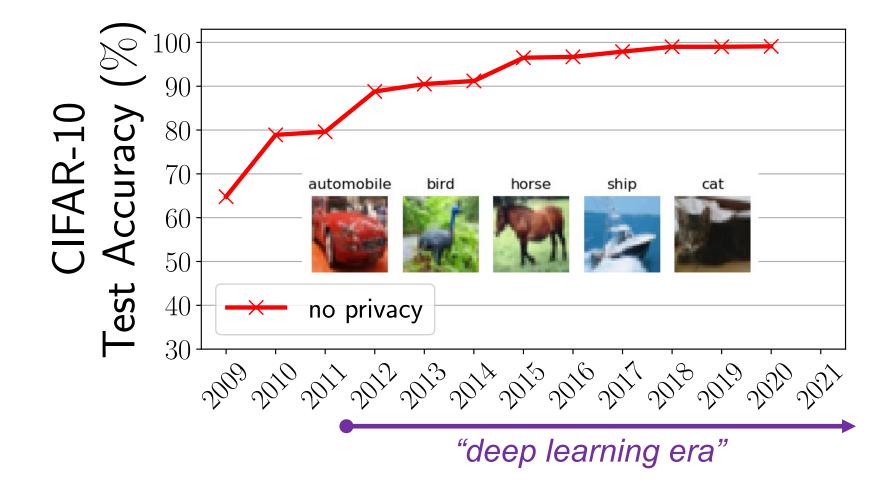
Differentially private learning is possible with noisy gradient descent.

Gradient descent

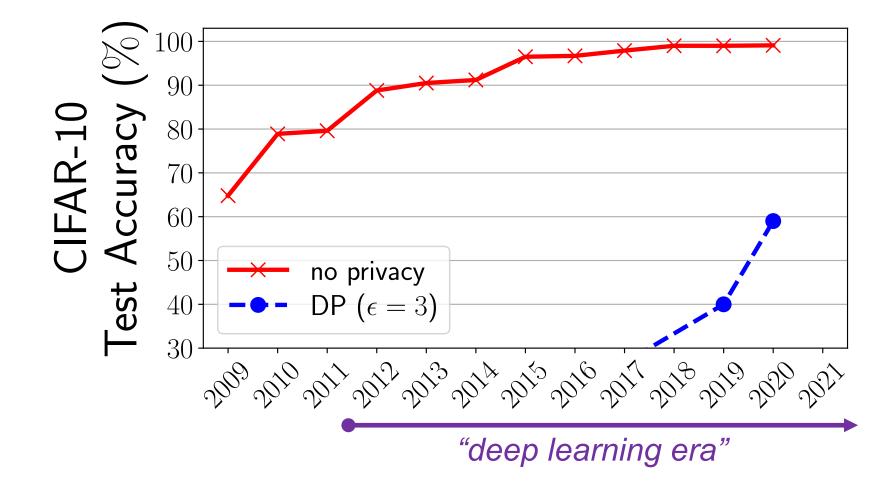
Private gradient descent

[Chaudhuri et al., '11], [Bassily et al. '14], [Shokri & Shmatikov '15], [Abadi et al. '16], ... add noise to each step to guarantee privacy

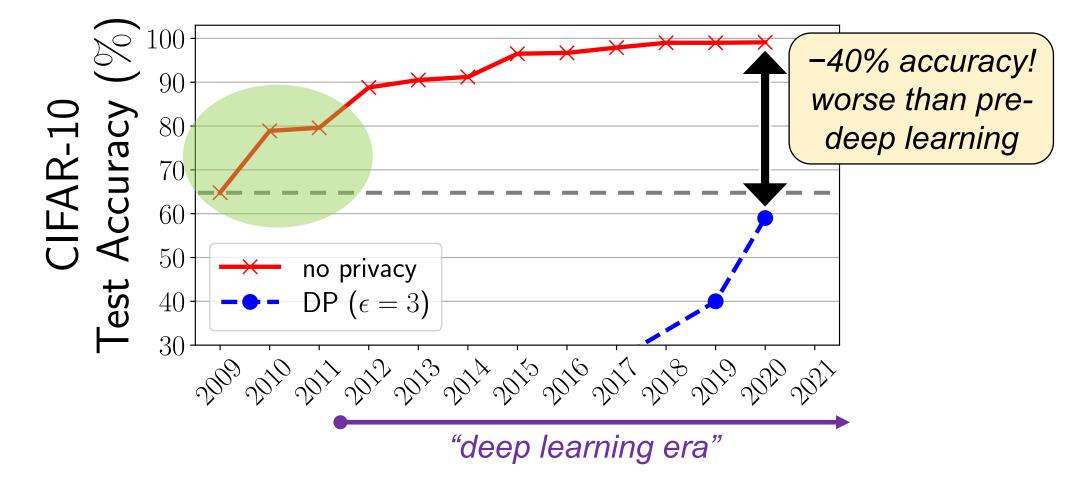
Non-private deep learning can achieve near-perfect accuracy.



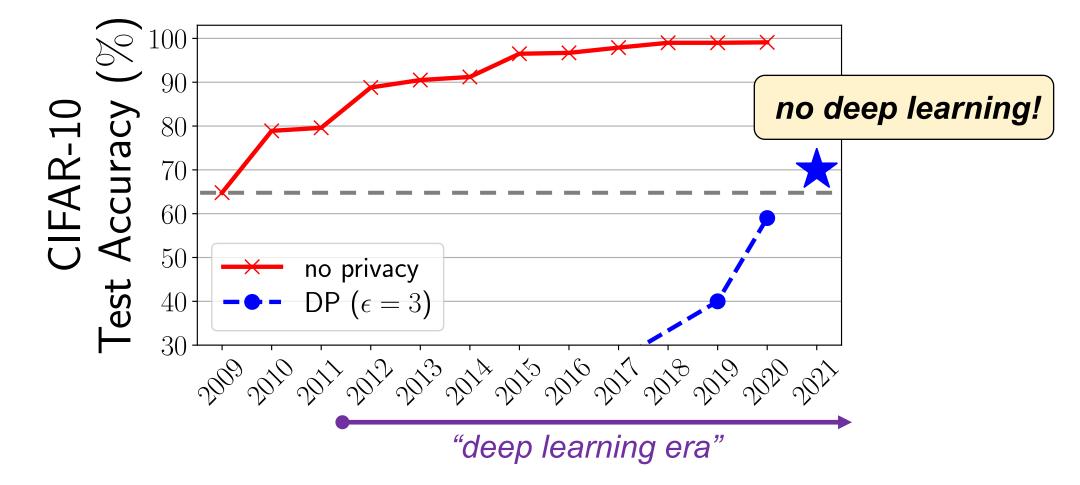
Differentially private deep learning lowers accuracy significantly.



Differentially private deep learning lowers accuracy significantly.



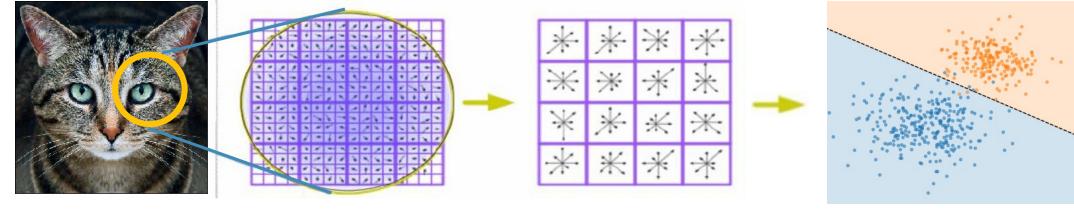
Differential privacy *without deep learning* improves accuracy.



"Differentially private learning needs better features", ICLR 2021 spotlight

Privacy-free features from "old-school" image recognition.

SIFT [Lowe '99, '04], HOG [Dalal & Triggs '05], SURF [Bay et al. '06], ORB [Rublee et al. '11], ... Scattering transforms: [Bruna & Mallat '11], [Oyallon & Mallat '14], ...



"handcrafted features"

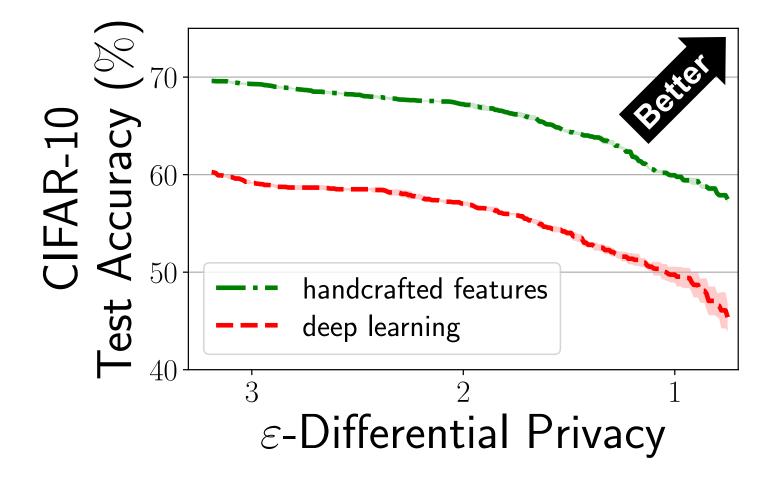
(no learning involved)

captures some *prior* about the domain: e.g., invariance under rotation & scaling

simple classifier

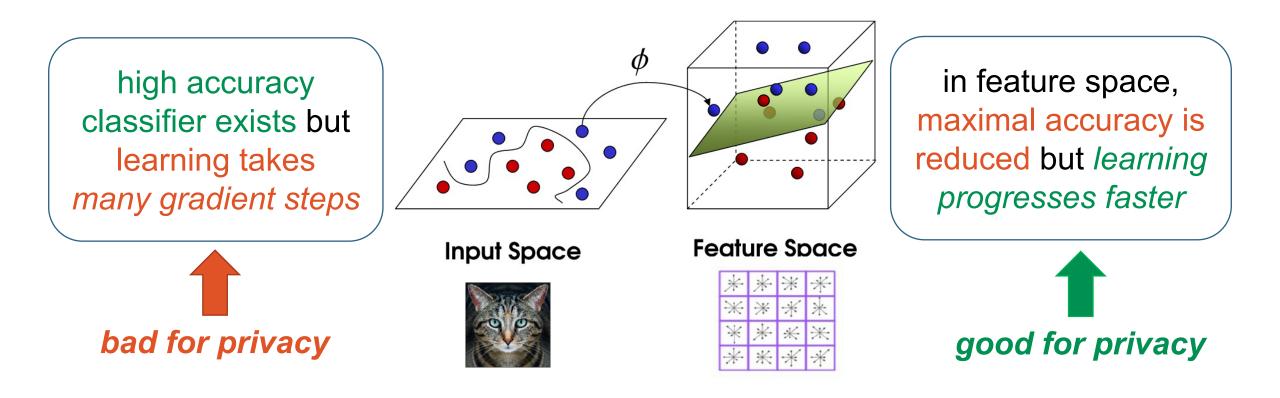
(e.g., logistic regression)

Handcrafted features lead to a better tradeoff between accuracy and privacy.



"Differentially private learning needs better features", ICLR 2021 spotlight

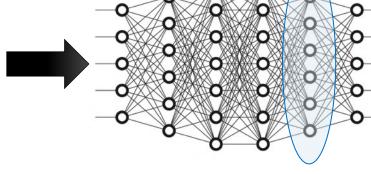
Handcrafted features lead to an *easier* learning task (for noisy gradient descent).



"Differentially private learning needs better features", ICLR 2021 spotlight

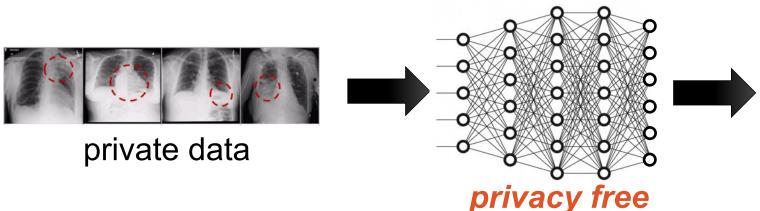
Learning better privacy-free features from public data.

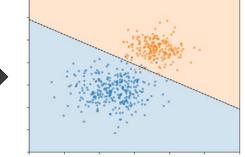
public data



train a feature extractor on public data...

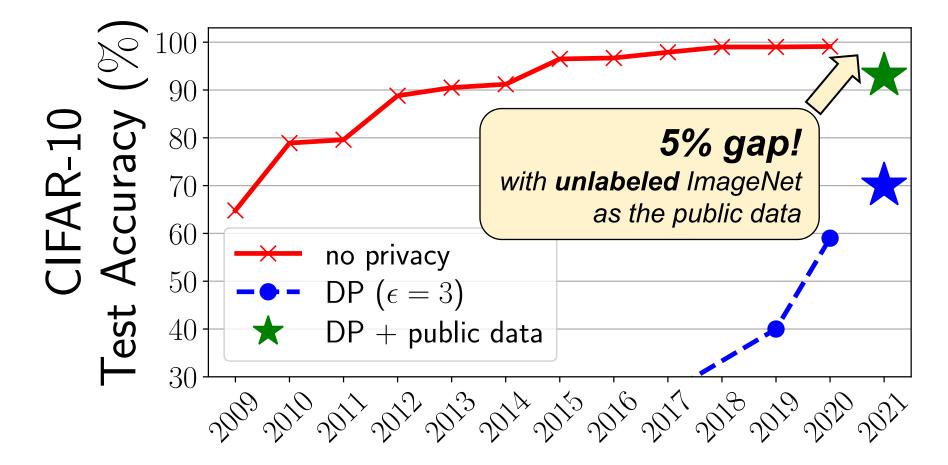
...transfer and finetune on private data





"Differentially private learning needs better features", ICLR 2021 spotlight

With access to a public dataset, privacy comes almost for free!



"Differentially private learning needs better features", ICLR 2021 spotlight

Differential private learning in industry.

My work: measuring and enhancing ML security

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

Defenses

Training private models (ICLR '21 spotlight)

Training robust models (NeurIPS '19 spotlight) (ICLR '18)

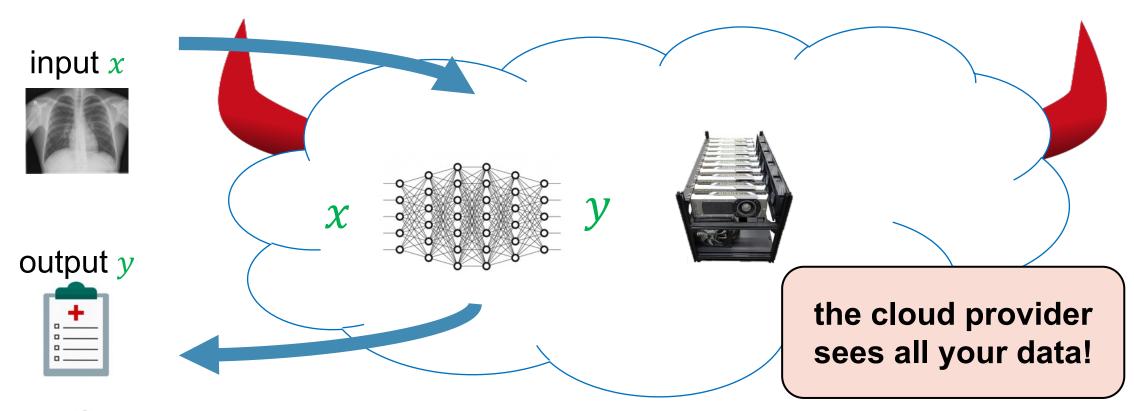
Deploying private models (ICLR '19 oral)

Foundations

Stealing ML models (USENIX '16) Microsoft's top 3 threats to AI systems Threat models for evasion (ICML '20)

Can we evaluate neural networks privately?

[Gilad-Bachrach et al. '16], [Mohassel et al. '17], [Liu et al. '17], [Juvekar et al. '18], [Hunt et al. '18], [Grover et al. '18], ...



sensitive applications (e.g., in healthcare) must abide by strict data confidentiality regulations

Slalom: secure cloud deployment of ML

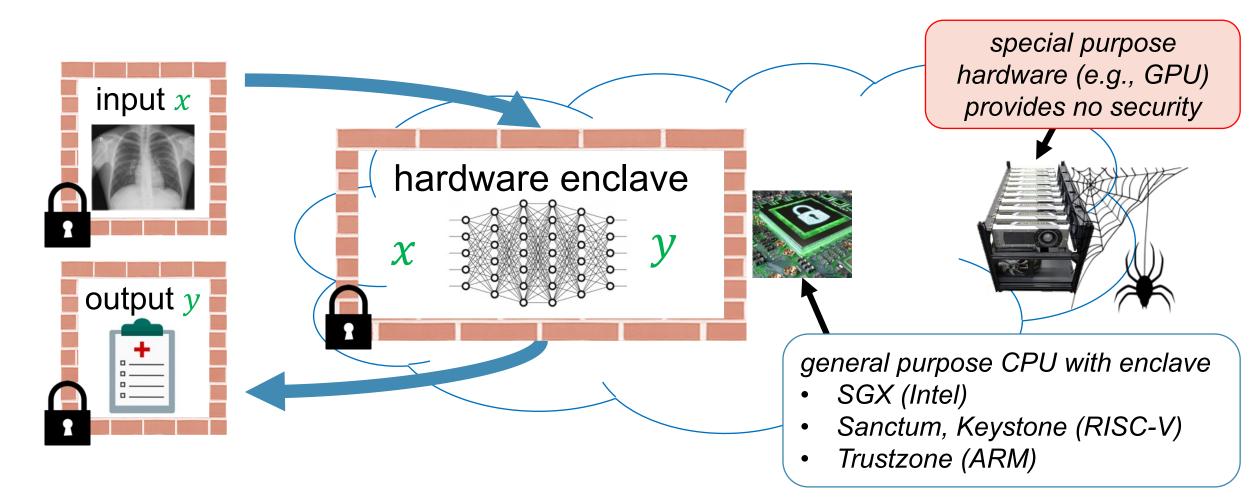
T & Boneh (ICLR 2019 *oral*)

Different from differential privacy! here, the model is already trained and we want to protect the *test data* of users

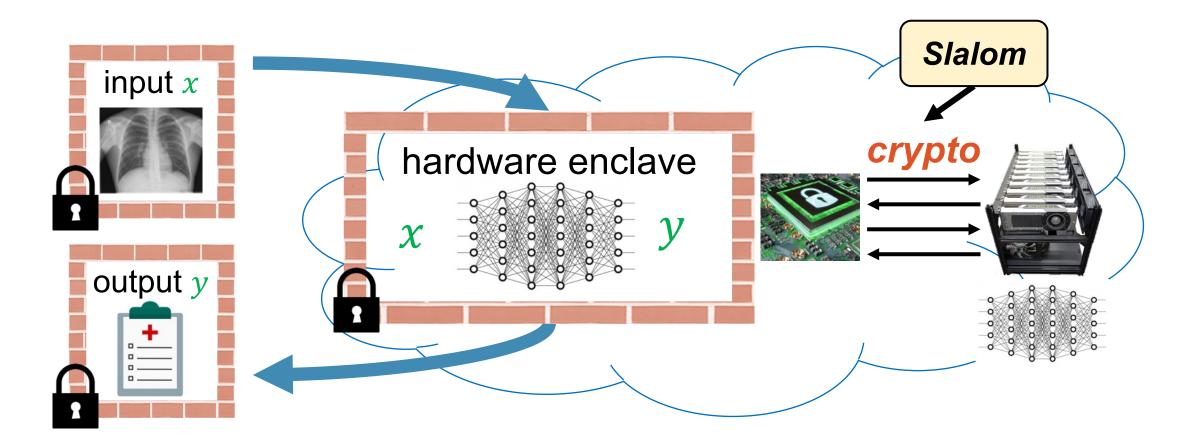
System goals:

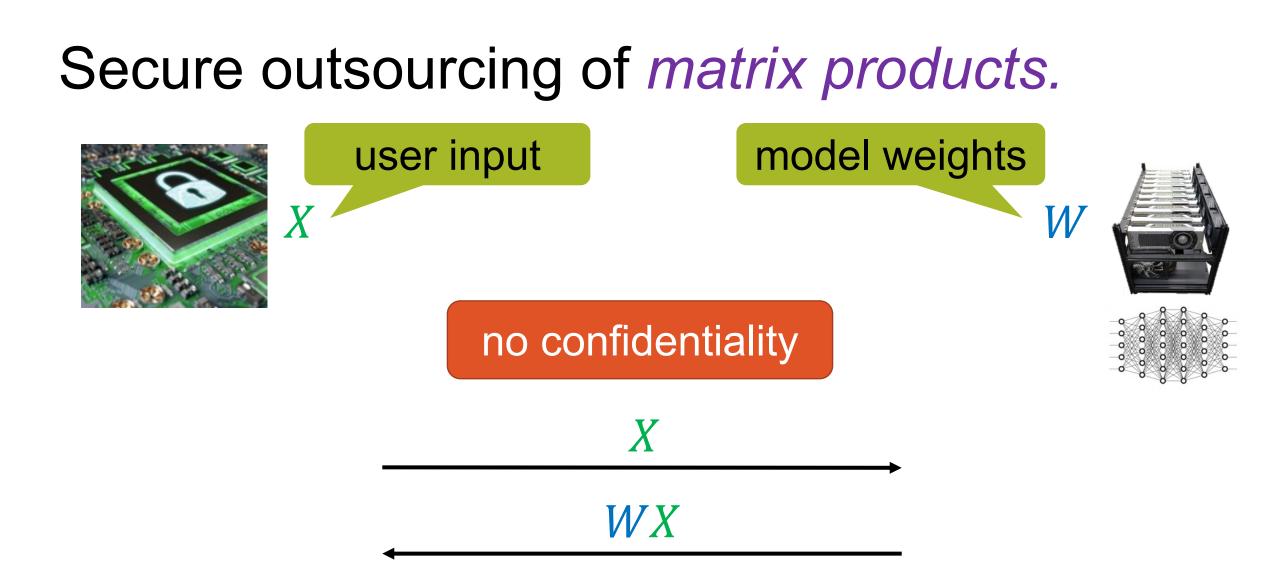
- Confidentiality: cloud provider does not learn user inputs
- Integrity: cloud provider cannot tamper with computation
- combines ideas from ML systems, hardware security and cryptography to protect user data from a malicious cloud.
- > maximizes use of cloud's special-purpose hardware.

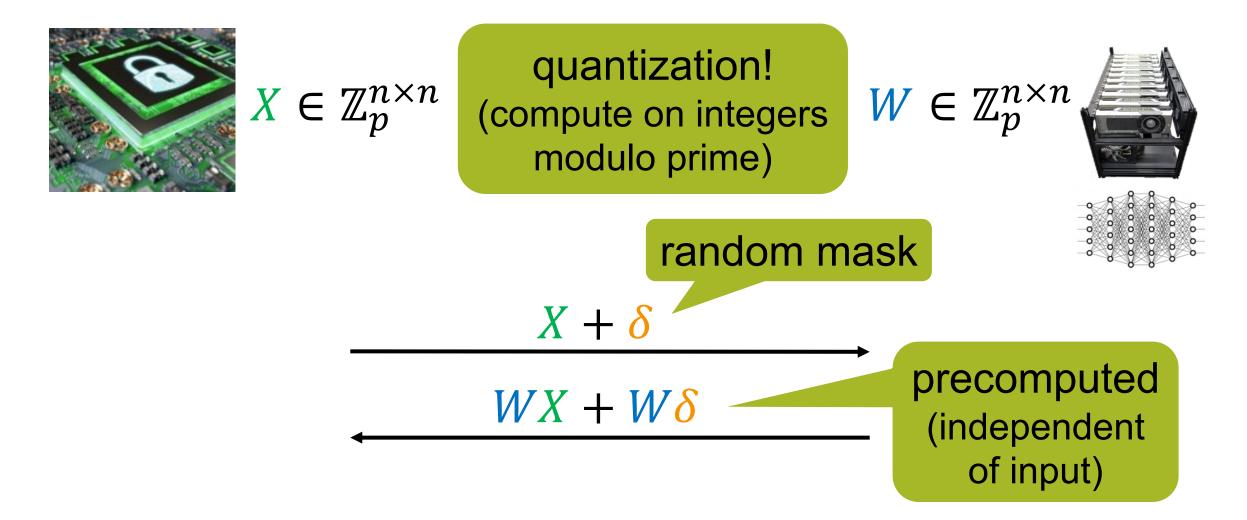
Baseline: security with slow CPU enclaves.

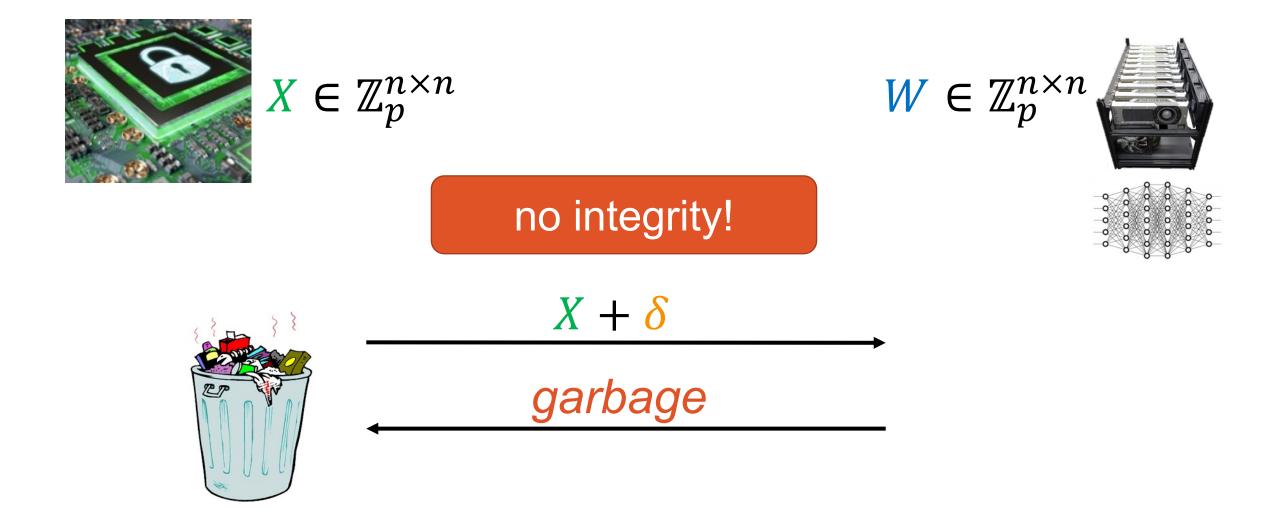


Slalom: security with fast custom hardware

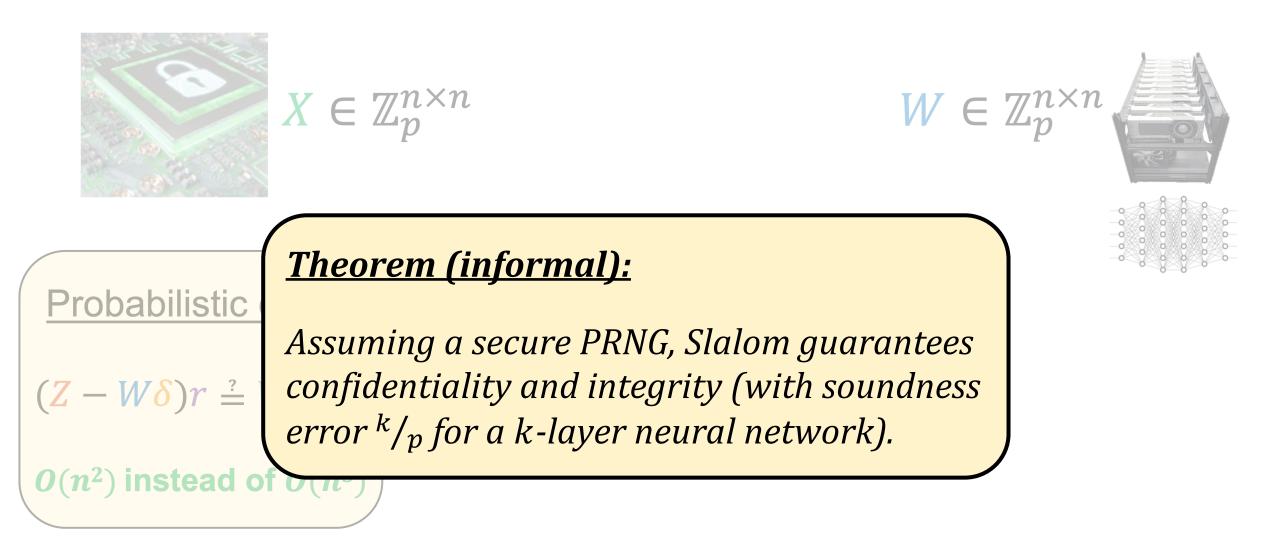








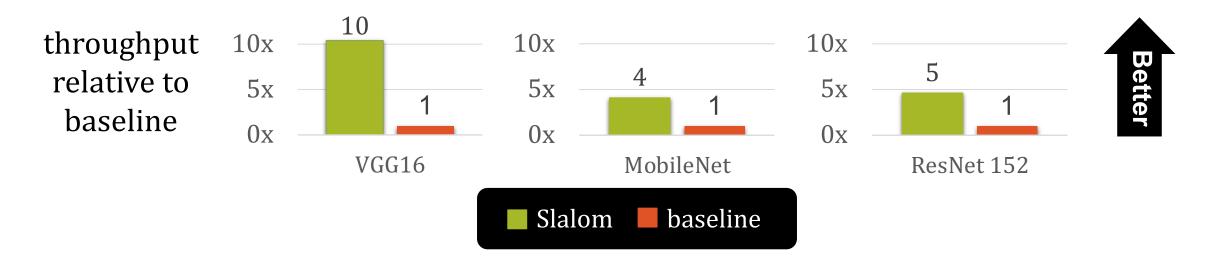




Slalom improves secure inference throughput.

- Intel SGX ↔ Nvidia Titan XP
- ImageNet inference throughput (images per second)
- Goal: Slalom (Enclave ↔ GPU) ≫ Enclave_{baseline}

execute entire model in secure enclave



My work: measuring and enhancing ML security

Evaluations

Evading ML models (NeurIPS '20) (ACM CCS '19) Influenced design changes in Adblock Plus Extracting private data (IEEE S&P '21)

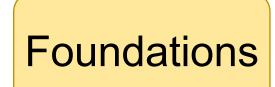
Defenses

Training private models (ICLR '21 *spotlight*) Training robust models (NeurIPS '19 *spotlight*) (ICLR '18) Deploying private models (ICLR '19 *oral*)

Foundations

Stealing ML models (USENIX '16) Microsoft's top 3 threats to AI systems Threat models for evasion (ICML '20)

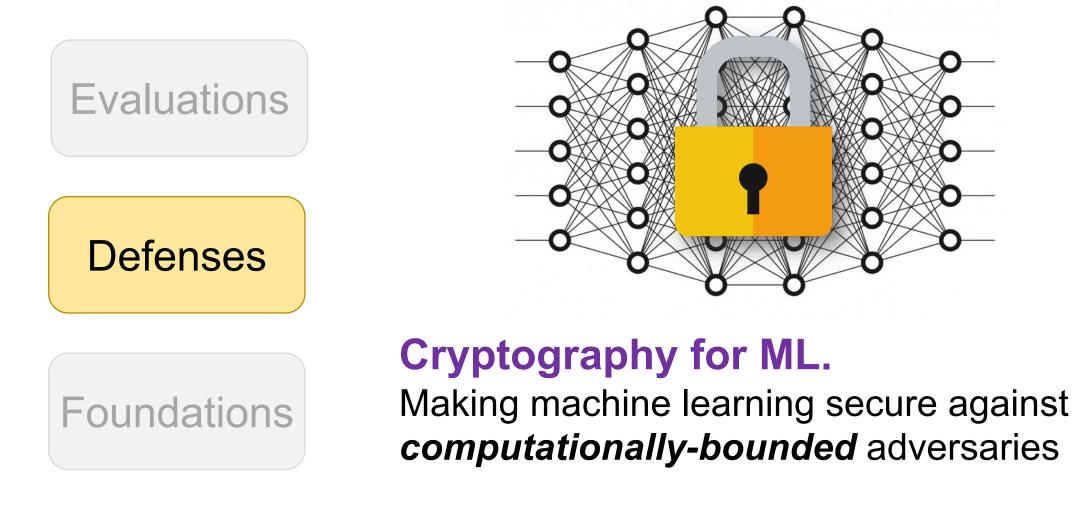
Future work ML security is a critical challenge for our society.



Formal foundations for trustworthy ML.

A framework as beautiful as differential privacy for other critical safety properties

Future work ML security is a critical challenge for our society.



Future work ML security is a critical challenge for our society.

Vetting ML safety in critical applications. Evaluating the failure modes of models once they reach 99.999% accuracy

Conclusion

ML is currently not *trustworthy*.

- it is not *robust*.
- it is not *private*.

We <u>can</u> get better robustness than current ML.

- > humans are an existence proof.
- > we must approach this as a security problem.

We <u>can</u> get better privacy than current ML.

> with differential privacy and cryptography.

Conclusion

ML is currently not *trustworthy*.

- it is not *robust*.
- it is not *private*.

We <u>can</u> get better robustness than current ML.

- > humans are an existence proof.
- > we must approach this as a security problem.

We <u>can</u> get better privacy than current ML.

> with differential privacy and cryptography.

