Fundamental Tradeoffs between Invariance and Sensitivity to **Adversarial Perturbations**

Florian Tramèr

Jens Behrmann

Nicholas Carlini

Nicolas Papernot Jörn-Henrik Jacobsen

What are Adversarial Examples?

"any input to a ML model that is intentionally designed by an attacker to fool the model into producing an incorrect output"

"Small" perturbations

99% Guacamole

"Large" perturbations

99% Guacamole

99% Guacamole

etc.

L_p-bounded Adversarial Examples

Given input x, find x' that is misclassified such that $||x' - x|| \le \varepsilon$

(+) Easy to formalize(-) Incomplete

Concrete measure of progress:

"my classifier has 97% accuracy for perturbations of L_2 norm bounded by $\varepsilon = 2$ "

Goodhart's Law

"When a measure becomes a target, it ceases to be a good measure"

New Vulnerability: Invariance Adversarial Examples

Small semantics-altering perturbations that don't change classification

Our Results

State-of-the-art robust models are too robust

Invariance to semantically meaningful features can be exploited

Inherent tradeoffs

Solving excessive sensitivity & invariance implies perfect classifier

12% agreement with human labels

A Fundamental Tradeoff

Hermit-crab

Guacamole

OK! I'll make my classifier robust to L₂ perturbations of size 22 (we don't yet know how to do this on ImageNet)

A Fundamental Tradeoff

Hermit-crab

OK! I'll choose a better norm than L₂

A Fundamental Tradeoff

Theorem (informal)

Choosing a "good" norm is as hard as building a perfect classifier

Are Current Classifiers Already too Robust?

A Case-Study on MNIST

State-of-the-art certified robustness:

 $L_{\infty} \leq 0.3$: **93%** accuracy

 $L_{\infty} \leq 0.4$: 88% accuracy

Automatically Generating Invariance Attacks

Challenge: ensure label is changed from human perspective

Meta-procedure: alignment via data augmentation

a few tricks

result

input

input from semanticsother class preserving transformation

diff

Do our invariance examples change human labels?

Which models agree most with humans?

Why can models be accurate yet overly invariant?

Or, why can an MNIST model achieve 88% test-accuracy for $\ell_{\infty} \leq 0.4$?

Problem: dataset is not diverse enough

Partial solution: data augmentation

Conclusion

Robustness isn't yet another metric to monotonically optimize!

Max "real" robust accuracy on MNIST: \approx 80% at $\ell_{\infty} = 0.3$ \approx 10% at $\ell_{\infty} = 0.4$

 \Rightarrow We've already over-optimized!

Are we really making classifiers more robust, or just overly smooth?