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We like attacking ML models.
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adversarial examples

data leakage

data poisoning

model stealing



But no one deploys ML models...
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ML models are deployed in larger systems.

4https://developers.google.com/machine-learning/crash-course/production-ml-systems

https://developers.google.com/machine-learning/crash-course/production-ml-systems


What does this mean for adversarial ML?
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ØPart I: Evasion attacks might get harder

ØPart II: New privacy attacks!



Part I: Evading ML systems.
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90% Tabby Cat 100% GuacamoleAdversarial noise

Evading Black-box Classifiers Without Breaking Eggs. Debenedetti, Carlini, Tramèr. 2023



A realistic threat model
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A realistic threat model: post bad stuff online.
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blocked



A realistic threat model: post bad stuff online.
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attack

posted



How? Black-box (query-based) attacks.
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How? Black-box (query-based) attacks.

11

posted



How? Black-box (query-based) attacks.
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How? Black-box (query-based) attacks.
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posted



Query-based attacks are getting better.
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median queries to reach a ℓ2 distance of 10 and ℓ∞ distance of 8/255 on untargeted ImageNet



Is the number of queries the right metric?
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median queries to reach a ℓ2 distance of 10 and ℓ∞ distance of 8/255 on untargeted ImageNet



A real ML system uses monitoring. 

16

blocked



Some queries are more expensive than others.
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blocked

blocked

blocked

posted
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Our goal: “stealthy” attacks.
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Find	 	 		such	that

while	minimizing		



Our attacks ensure most queries are on the 
“good” side of the boundary.
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Inspiration: dropping eggs from buildings.
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See paper for details!



Our stealthy attacks make fewer “bad” 
queries, but many more “good” queries.
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Our stealthy attacks make fewer “bad” 
queries, but many more “good” queries.

22https://github.com/ethz-spylab/realistic-adv-examples

https://github.com/ethz-spylab/realistic-adv-examples


Take-away (Part I).

Ø Black-box (query-based) attacks are not practical.
Ø Existing attack optimize for the wrong metric
Ø Stealthy attacks come at a high cost

Ø Optimizing this new metric might require 
fundamentally new ideas!
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Part II: New privacy attacks.

24Privacy Side Channels in Machine Learning Systems. Debenedetti et al. 2023



Example: stateful defenses against query attacks.
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Many of these queries are very similar!
This is an attack!!!

Chen et al. 2019, Li et al. 2022



The issue: Sybil attacks.
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“Solution”: global query log.
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The new issue: cross-user query leakage.
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honest user sends a sensitive query to the model



The new issue: cross-user query leakage.
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attacker can detect if their query is similar!



This is a side-channel attack.

30

Membership leakage 
from deduplication...

Data extraction from 
memorization filters...

“Breaking” 
Differential Privacy...

Ø more attacks in our paper...



Conclusion.

Ø Study the security of ML systems, not just models.

Ø Current attacks make unrealistic assumptions 
about the system

Ø System components are an underexplored attack surface
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