Is anything really OOD anymore? And what does this mean for privacy?

Florian Tramèr ETH Zürich

(based on joint work with Gautam Kamath and Nicholas Carlini)

Models trained on one dataset can be brittle on slightly modified data.

But many of these OOD benchmarks seem to be "solved" with more pre-training.

Fang et al. 2022

Is this still "out of distribution" generalization?

Today: what does recent "OOD progress" mean for private learning?

Formally: training with *differential privacy*

$\frac{\Pr[\operatorname{Train}(D) = \fbox]}{\Pr[\operatorname{Train}(D + \{x\}) = \bigstar]} \le e^{\varepsilon}$

Differentially private learning is possible with *noisy* gradient descent.

Gradient descent

Private gradient descent

[Chaudhuri et al., '11], [Bassily et al. '14], [Shokri & Shmatikov '15], [Abadi et al. '16], ... add noise to each step to guarantee privacy

Training private ML models is challenging!

Solution? Leverage public data!

treat the CIFAR-100 dataset as a public dataset and use it to train a network with the same architecture.

	Transfer + SGD (not private)	75%	∞	0	-
CIFAR10	Transfer + DP-SGD (Abadi et al.)	67%	2	10^{-5}	Public Data
	Transfer + DP-SGD (ours)	72%	2.1	10^{-5}	Public Data

Making the Shoe Fit: Architectures, Initializations, and Tuning for Learning with Privacy. Papernot et al. 2019

Moar public data!

Even moar public data!

LARGE LANGUAGE MODELS STRONG DIFFERENTIALLY PR	CAN BE	NEDC								
STRONG DITTERENTIALET T	Differentially Private Fine-tuning of Language Models*									
Xuechen Li ¹ , Florian Tramèr ² , Percy Liang ¹ , Tat ¹ Stanford University ² Google Research	tsunori Ηε Da Yu [†]	Saurabh Naik ‡	Arturs Backurs §	Sivakanth Gopi [§]	Huseyin A. Inan [§]					
Unlocking High-Accuracy Differentially Private Image Classification through Scale										
CAN FOUNDATION MODELS HELP US ACHIEVE PERFECT SECRECY?			Private Image Classification							
Simran Arora	Christopher Ré		Harsh Mehta Google Research harshm@google.com	Abhradeep T Google Res athakurta@go	hakurta search ogle.com					
Stanford University Stanford, CA simran@cs.stanford.edu c	Stanford University Stanford, CA chrismre@cs.stanfor	.edu	Alexey Kurakin Google Research kurakin@google.com	Ashok Cu Boston Un ashok@cutko	tkosky iversity osky.com 13					

The nirvana: **zero-shot** privacy.

CAN FOUNDATION MODELS HELP US ACHIEVE PERFECT SECRECY?

Simran Arora Stanford University Stanford, CA simran@cs.stanford.edu Christopher Ré Stanford University Stanford, CA chrismre@cs.stanford.edu

The nirvana: **zero-shot** privacy.

Zero-shot learning "solves" many "privacy benchmarks"!

> CIFAR-10: 97% zero-shot acc with OpenCLIP (LAION pretraining)

ImageNet: 88.8% zero-shot acc with JFT pretraining

Near-SOTA accuracy with *perfect* privacy!

Two (possible) issues for private learning.

1. Is public pre-training *cheating*?

2. Does public pre-training *work*?

Two (possible) issues for private learning.

1. Is public pre-training *cheating*?

2. Does public pre-training *work*?

Does public pretraining still preserve "privacy"?

But is this "privacy preserving"?

Two (possible) issues for private learning.

1. Is public pre-training *cheating*?

2. Does public pre-training *work*?

A little secret...

No one cares about CIFAR-10 or ImageNet!

What makes a good benchmark?

The benchmark is a <u>proxy for a general task</u> we care about (e.g. image classification)

Progress on the benchmark is (somewhat) <u>predictive</u> of performance on the general task

What tasks do we really care about solving with privacy?

Are current benchmarks at least tracking *algorithmic progress* on private learning?

- Tasks we care about solving privately are (by definition) less likely to be represented on the Internet
- Recent improvements on "private" benchmarks seem mainly due to generic improvements in zero-shot learning

Open problems

How good is public pretraining for sensitive data that is not well represented on the Web?

How good would public pretraining be if we removed all sensitive data?

Outlook

Should Internet data be free game for "privacy-preserving" ML?

> How useful is public pretraining on highly sensitive data?

> Would public pretraining on non-sensitive data be as useful?

> We need better privacy benchmarks to answer these questions!