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Models trained on one dataset can be brittle 
on slightly modified data.
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But many of these OOD benchmarks seem to 
be “solved” with more pre-training.

Fang et al. 2022
3



Is this still “out of distribution” 
generalization?
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LAION

distribution distribution

5



distribution distribution

distribution

LAION

6



Today: what does recent “OOD progress” 
mean for private learning?

Training 
algorithm

Training 
algorithm

your sensitive 
data
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Formally: training with differential privacy

Pr[Train 𝐷 =	 ]
Pr[Train 𝐷 + 𝑥 =	 ]

≤ 𝑒!
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Differentially private learning is possible with 
noisy gradient descent.

Gradient descent

Private gradient descent
[Chaudhuri et al., ‘11], [Bassily et al. ‘14], 
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...

add noise to each step to 
guarantee privacy
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Training private ML models is challenging!
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Differentially Private Learning Needs Better Features (or Much More Data). Tramèr & Boneh. 2021 10



Solution? Leverage public data!

Making the Shoe Fit: Architectures, Initializations, and Tuning for Learning with Privacy. Papernot et al. 2019
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Moar public data!
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5% gap!
with unlabeled ImageNet as 

the public data
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Even moar public data!
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The nirvana: zero-shot privacy.
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The nirvana: zero-shot privacy.

DP for 𝜀 = 0	‼!
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Zero-shot learning “solves” many 
“privacy benchmarks”!

Ø CIFAR-10: 97% zero-shot acc with OpenCLIP (LAION pretraining)

Ø ImageNet: 88.8% zero-shot acc with JFT pretraining
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Near-SOTA accuracy with *perfect* privacy!
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Two (possible) issues for private learning.

1. Is public pre-training cheating?

2. Does public pre-training work?

18



Two (possible) issues for private learning.

1. Is public pre-training cheating?

2. Does public pre-training work?

19



Does public pretraining still preserve “privacy”?

Pr[Train 𝐷!"#$"%&' + 𝐷!"&(%$# =	 ]
Pr[Train 𝐷!"#$"%&' + 𝐷!"&(%$#) =	 ]

≤ 𝑒*
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But is this “privacy preserving”?
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Two (possible) issues for private learning.

1. Is public pre-training cheating?

2. Does public pre-training work?
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A little secret...
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No one cares about CIFAR-10 or ImageNet!
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What makes a good benchmark?

Ø The benchmark is a proxy for a general task we care about 
(e.g. image classification)

Ø Progress on the benchmark is (somewhat) predictive of performance 
on the general task
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What tasks do we really care about solving 
with privacy?
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Are current benchmarks at least tracking 
algorithmic progress on private learning?

Ø Tasks we care about solving privately are 
(by definition) less likely to be represented on 
the Internet

Ø Recent improvements on “private” 
benchmarks seem mainly due to generic 
improvements in zero-shot learning

27



Open problems
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How good is public pretraining for sensitive 
data that is not well represented on the Web?
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How good would public pretraining be if we 
removed all sensitive data?
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Outlook

Ø Should Internet data be free game for “privacy-preserving” ML?

Ø How useful is public pretraining on highly sensitive data?

Ø Would public pretraining on non-sensitive data be as useful?

Ø We need better privacy benchmarks to answer these questions!
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