
Sealed-Glass Proofs

Florian Tramèr, Fan Zhang, Huang Lin,
Jean-Pierre Hubaux, Ari Juels, and Elaine Shi.

IEEE EuroS&P, 2017
April 26, 2017

Attested Execution 
properties, threat model, use-cases

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity
• Authenticity

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity
• Authenticity

key-exchange

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity
• Authenticity

key-exchange
𝚺manuf.[Build(X) || Data]

Attestation:
Digital (group) signature over
enclave program + add. data

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity
• Authenticity

key-exchange

Ek[code || data]
𝚺manuf.[Build(X) || Data]

Enclave

Adversarial
host / OS

Attested Execution 
properties, threat model, use-cases

• Isolated execution environment
on untrustworthy host
• Confidentiality
• Integrity
• Authenticity

key-exchange

Ek[code || data]
Ek[result]

𝚺manuf.[Build(X) || Data]

Isolation is imperfect

• E.g., SGX page faults can be induced and seen by OS
• Leaks memory access patterns

• Many recent papers about cache side channels

libjpeg attack from Y. Xu, W. Cui, and M. Peinado, "Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems", IEEE S&P, 2015

Isolation is imperfect

Solutions?

• Side channels “out-of-scope”

• Oblivious Data Structures

• ORAM

• What if leakage doesn’t matter?

Solutions?

New adversarial model

Adversarial
host / OS

Enclave

• Model user program execution in
SGX as Transparent

New adversarial model

Adversarial
host / OS

Enclave

• Model user program execution in
SGX as Transparent

• We assume unbounded leakage
of program execution to host

New adversarial model

Adversarial
host / OS

Enclave

• Model user program execution in
SGX as Transparent

• We assume unbounded leakage
of program execution to host

• But correct execution and
attestation

New adversarial model

Adversarial
host / OS

Enclave

• Model user program execution in
SGX as Transparent

• We assume unbounded leakage
of program execution to host

• But correct execution and
attestation

• I.e., Integrity, but not confidentiality

New adversarial model

Adversarial
host / OS

Enclave

• Model user program execution in
SGX as Transparent

• We assume unbounded leakage
of program execution to host

• But correct execution and
attestation

• I.e., Integrity, but not confidentiality

New adversarial model

no secret code or data!
𝚺manuf.[Build(X) || result of exec.]

Sealed-Glass Proof (SGP)

• Key observation: In many interactive
proofs, prover holds secrets, so information
leakage on prover device doesn't hurt

Sealed-Glass Proof (SGP)

• Key observation: In many interactive
proofs, prover holds secrets, so information
leakage on prover device doesn't hurt

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

Pinp
"open"

Sealed-Glass Proof (SGP)

• Model: P can observe but can't
modify once inpP “committed”

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

Why “sealed glass” ?

Pinp

• Model: P can observe but can't
modify once inpP “committed”

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

Why “sealed glass” ?

Pinp

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

SGP generalizes…

Pinp

• Verifiable Computing

V

inpV

P

FSGP[P, V, prog]

outp=prog(inpP, inpV)

SGP generalizes…

• Verifiable Computing
• ZK proofs

VP

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

SGP generalizes…

• Verifiable Computing
• ZK proofs
• Commitments, etc.

VP

Pinp
FSGP[P, V, prog]

"open"

SGP generalizes…

Pinp

seller

exploit

buyer

software S

Application: 
Fair bug bounty system

$Reward

seller

exploit

buyer

software S

Application: 
Fair bug bounty system

$Reward

seller buyer

Application: Bug bounty

• progS(exploit) = "true"  
iff exploit compromises software S
• E.g., SQL injection attack

seller buyer

Application: Bug bounty

• progS(exploit) = "true"  
iff exploit compromises software S
• E.g., SQL injection attack

seller buyer

exploit
FSGP[P, V, progS]

Valid exploit for S?

"open"
exploit

challenge

Application: Bug bounty

Interlude: Smart-Contracts

Interlude: Smart-Contracts
• Code executed on blockchain Blockchain

T=1
Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain Blockchain

T=1
Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain

• Scripted in Turing-complete
language (e.g. Ethereum)

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain

• Scripted in Turing-complete
language (e.g. Ethereum)

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain

• Scripted in Turing-complete
language (e.g. Ethereum)

• Operates on blockchain state
• Money
• Local persistent storage

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain

• Scripted in Turing-complete
language (e.g. Ethereum)

• Operates on blockchain state
• Money
• Local persistent storage

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain

• Scripted in Turing-complete
language (e.g. Ethereum)

• Operates on blockchain state
• Money
• Local persistent storage

• Contract state is publicly
visible

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Interlude: Smart-Contracts
• Code executed on blockchain
• Scripted in Turing-complete

language (e.g. Ethereum)
• Arbitrary rich functionality

• Can operate on blockchain state
• Money
• Local persistent storage

• Smart contract API
• Callable by user accounts
• Callable by other contracts

• State is publicly visible

Blockchain
T=1

Alice: 20$
Bob: 5$

T=2

Alice: 25$
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin
Flip

Alice +10$
⇩

Abstraction: Smart contract
simulates trusted third party
with public state.

Bounty
contract

Blockchain

FSGP[P, V,]

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit✔

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit✔

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit✔

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit✔

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit✔

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit

seller

buyer

End-to-end bug-bounty system

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit
seller

buyer

End-to-end bug-bounty system

• Fair exchange: $Reward for exploit against S

Bounty
contract

Blockchain

$Reward

FSGP[P, V,]

progS

progS

exploit
seller

buyer

End-to-end bug-bounty system

End-to-end bug-bounty system

Properties:
1. Fair exchange: $Reward iff delivered

exploit

End-to-end bug-bounty system

Properties:
1. Fair exchange: $Reward iff delivered

exploit
2. Confidentiality: exploit encrypted under

public key of buyer

End-to-end bug-bounty system

Properties:
1. Fair exchange: $Reward iff delivered

exploit
2. Confidentiality: exploit encrypted under

public key of buyer
3. Guaranteed payment*: buyer will pay at least

one valid seller before specified deadline 
→ Prevents bug-bounty competition from
being unfairly terminated

*ZK-snark-based Bitcoin systems can't achieve this one

End-to-end bug-bounty system

Marketplaces for
what kinds of bugs?

• In principle, for any system executable /
simulatable in enclave

Marketplaces for
what kinds of bugs?

• In principle, for any system executable /
simulatable in enclave

• In paper:
• SQL injection attacks

Marketplaces for
what kinds of bugs?

• In principle, for any system executable /
simulatable in enclave

• In paper:
• SQL injection attacks

• Facebook Proxygen library fronting SQLite
• Certificate Validation Logic conflicts (“Frankencerts”)

Marketplaces for
what kinds of bugs?

• In principle, for any system executable /
simulatable in enclave

• In paper:
• SQL injection attacks

• Facebook Proxygen library fronting SQLite
• Certificate Validation Logic conflicts (“Frankencerts”)

• OpenSSL and mbedTLS
• MITM attacks against TLS handshakes

• Simulation environment in which exploit attacks simulated handshake
between server and honest user

• (Assuming SGX v2)

Marketplaces for
what kinds of bugs?

Summary

• Transparent enclave execution (TEE)
• Lots of fun things can be done without

confidentiality!
• Natural extensions to allow for some

functionalities to remain hidden from host (e.g.,
crypto primitives)

Summary

• Transparent enclave execution (TEE)
• Lots of fun things can be done without

confidentiality!
• Natural extensions to allow for some

functionalities to remain hidden from host (e.g.,
crypto primitives)

• Combining SGX with smart-contracts
• Can provide guarantees (e.g. fair-exchange) not

achievable with “traditional” crypto
• Difficult to get right! Both formally and in practice

Summary

• Transparent enclave execution (TEE)
• Lots of fun things can be done without

confidentiality!
• Natural extensions to allow for some

functionalities to remain hidden from host (e.g.,
crypto primitives)

• Combining SGX with smart-contracts
• Can provide guarantees (e.g. fair-exchange) not

achievable with “traditional” crypto
• Difficult to get right! Both formally and in practice

Summary

Sealed Glass Proofs

https://eprint.iacr.org/2016/635

Formal Abstractions for Attested
Execution Secure Processors

https://eprint.iacr.org/2016/1027

https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/1027

