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Attested Execution 
properties, threat model, use-cases

• Isolated execution environment 
on untrustworthy host 
• Confidentiality 
• Integrity 
• Authenticity

key-exchange

Ek[code || data]
Ek[result]

𝚺manuf.[Build(X) || Data]



Isolation is imperfect



• E.g., SGX page faults can be induced and seen by OS 
• Leaks memory access patterns 

• Many recent papers about cache side channels

libjpeg attack from Y. Xu, W. Cui, and M. Peinado, "Controlled-Channel Attacks: 
Deterministic Side Channels for Untrusted Operating Systems", IEEE S&P, 2015

Isolation is imperfect



Solutions?



• Side channels “out-of-scope”  

• Oblivious Data Structures 

• ORAM 

• What if leakage doesn’t matter?

Solutions?
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Adversarial 
host / OS

Enclave

• Model user program execution in 
SGX as Transparent

• We assume unbounded leakage 
of program execution to host

• But correct execution and 
attestation

• I.e., Integrity, but not confidentiality

New adversarial model

no secret code or data!
𝚺manuf.[Build(X) || result of exec.]



Sealed-Glass Proof (SGP)



• Key observation: In many interactive 
proofs, prover holds secrets, so information 
leakage on prover device doesn't hurt

Sealed-Glass Proof (SGP)



• Key observation: In many interactive 
proofs, prover holds secrets, so information 
leakage on prover device doesn't hurt

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

Pinp
"open"

Sealed-Glass Proof (SGP)



• Model: P can observe but can't 
modify once inpP  “committed”

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

Why “sealed glass” ?

Pinp



• Model: P can observe but can't 
modify once inpP  “committed”

V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

Why “sealed glass” ?

Pinp



V

inpV

P

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

"open"

SGP generalizes…

Pinp



• Verifiable Computing

V

inpV

P

FSGP[P, V, prog]

outp=prog(inpP, inpV)

SGP generalizes…



• Verifiable Computing
• ZK proofs

VP

Pinp
FSGP[P, V, prog]

outp=prog(inpP, inpV)

SGP generalizes…



• Verifiable Computing
• ZK proofs
• Commitments, etc.

VP

Pinp
FSGP[P, V, prog]

"open"

SGP generalizes…

Pinp
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• progS(exploit) = "true"  
iff exploit compromises software S
• E.g., SQL injection attack

seller buyer

exploit
FSGP[P, V, progS]

Valid exploit for S?

"open"
exploit

challenge

Application: Bug bounty
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• Money 
• Local persistent storage

• Contract state is publicly 
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Interlude: Smart-Contracts
• Code executed on blockchain 
• Scripted in Turing-complete 

language (e.g. Ethereum) 
• Arbitrary rich functionality 

• Can operate on blockchain state  
• Money 
• Local persistent storage 

• Smart contract API 
• Callable by user accounts  
• Callable by other contracts 

• State is publicly visible

Blockchain
T=1 

Alice: 20$ 
Bob: 5$ 

T=2 

Alice: 25$ 
Bob: 0$

5$
⟸BobAlice⟹
5$

Coin 
Flip

Alice +10$
⇩

Abstraction: Smart contract 
simulates trusted third party 
with public state.
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Properties:
1. Fair exchange: $Reward iff delivered 

exploit
2. Confidentiality: exploit encrypted under 

public key of buyer
3. Guaranteed payment*: buyer will pay at least 

one valid seller before specified deadline 
→ Prevents bug-bounty competition from 
being unfairly terminated

*ZK-snark-based Bitcoin systems can't achieve this one

End-to-end bug-bounty system
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• In principle, for any system executable / 
simulatable in enclave

• In paper:
• SQL injection attacks

• Facebook Proxygen library fronting SQLite
• Certificate Validation Logic conflicts (“Frankencerts”)

• OpenSSL and mbedTLS
• MITM attacks against TLS handshakes 

• Simulation environment in which exploit attacks simulated handshake 
between server and honest user

• (Assuming SGX v2)

Marketplaces for  
what kinds of bugs?
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Sealed Glass Proofs

https://eprint.iacr.org/2016/635

Formal Abstractions for Attested 
Execution Secure Processors

https://eprint.iacr.org/2016/1027

https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/1027

