FairTest: Discovering unwarranted associations in data-driven applications

IEEE EuroS&P April 28th, 2017

Florian Tramèr¹, Vaggelis Atlidakis², Roxana Geambasu², Daniel Hsu², Jean-Pierre Hubaux³, Mathias Humbert⁴, Ari Juels⁵, Huang Lin³

¹Stanford University, ²Columbia University, ³École Polytechnique Fédérale de Lausanne, ⁴Saarland University, ⁵Cornell Tech

Websites Vary Prices, Deals Based on Users' Information

By JENNIFER VALENTINO-DEVRIES, JEREMY SINGER-VINE and ASHKAN SOLTANI December 24, 2012

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was \$15.79, while the price on Trude Frizzell's screen, just a few miles away, was \$14.29.

A key difference: where Staples seemed to think they were located.

In what appears to be an unintended side effect of Staples' pricing methods-likely a function of retail competition with its rivals-the Journal's testing also showed that areas that tended to see the discounted prices had a higher average income than areas that tended to see higher prices.

2

Google Photos labeled black people 'gorillas'

Jessica Guynn, USA TODAY 2:10 p.m. EDT July 1, 2015

SAN FRANCISCO — Google has apologized after its new Photos application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a screenshot of photos he had uploaded in which the app had labeled Alcine and a friend, both African American, "gorillas."

Yontan Zunger, an engineer and the company's chief architect of Google+, responded swiftly to Alciné on Twitter: "This is 100% Not OK." And he promised that Google's Photos team was working on a fix.

These are **software bugs**: need to *actively test for them* and *fix them (i.e., debug)* in data-driven applications... *just as with functionality, performance, and reliability bugs.*

Unwarranted Associations Model

Limits of preventative measures

What doesn't work:

- <u>Hide protected attributes</u> from data-driven application.
- Aim for statistical parity w.r.t. protected classes and service output.

Foremost challenge is to even detect these unwarranted associations.

A Framework for Unwarranted Associations

1. Specify relevant data features:

- Protected variables
- "Utility": a function of the algorithm's output
- Explanatory variables
- Contextual variables

(e.g., Gender, Race, ...)
(e.g., Price, Error rate, ...)
(e.g., Qualifications)
(e.g., Location, Job, ...)

- 2. Find **statistically significant associations** between protected attributes and utility
 - Condition on explanatory variables
 - Not tied to any particular *statistical metric* (e.g., odds ratio)
- 3. Granular search in semantically meaningful subpopulations
 - Efficiently list subgroups with highest adverse effects

FairTest: a testing suite for data-driven apps

- Finds context-specific associations between protected variables and application outputs, conditioned on explanatory variables
- Bug report ranks findings by assoc. strength and affected pop. size

. . .

Core of FairTest is based on statistical machine learning

8

confidence intervals for assoc. metrics

Reports for Fairness bugs

- <u>Example</u>: simulation of location based pricing scheme
- Test for disparate impact on low-income populations
 - Low effect over whole US population
 - High effects in specific subpopulations

Report Assoc.	of associatio metric: norm.	ns of <mark>O=Price</mark> o mutual informa	n <mark>S_i=Income</mark> : tion (NMI).
Global	Population of	size 494,436	
p-valu	e=3.34e-10 ; N	MI = [0.0001, 0.0]	005]
Price	Income <\$50K	Income >=\$50K	Tot
High	15301 (6%)	13867 (6%)	29168 (6
Low	234167(94%)	231101(94%)	465268 (94
Total	249468(50%)	244968(50%)	494436(100
1 Sub	population of	size 23 532	
Conter	$t = \{ State \cdot C \}$	Race: White	
p-valu	e=2.31e-24; N	MI = [0.0051, 0.0]	2031
Price	Income <\$50K	Income >=\$50K	Tota
	606 (8%)	691 (4%)	1297 (6%
High			
High Low	7116(92%)	15119(96%)	22235 (94%
High Low Total	7116(92%) 7722(33%)	15119(96%) 15810(67%)	22235 (94% 23532(100%
High Low Total	7116(92%) 7722(33%)	15119(96%) 15810(67%)	22235 (94%) 23532(100%)
High Low Total 2. Suby	7116(92%) 7722(33%)	15119(96%) 15810(67%) size 2,198	22235 (94% 23532 (100%
High Low Total 2. Subj Context	7116(92%) 7722(33%) population of s t={State: NY, F	15119(96%) 15810(67%) size 2,198 Cace: Black, Gen	22235 (94% 23532(100% der: Male}
High Low Total 2. Subj Context p-value	7116(92%) 7722(33%) population of s t={State: NY, F e=7.72e-05 ; NN	15119(96%) 15810(67%) size 2,198 sace: Black, Gen 4I=[0.0040, 0.09	22235 (94% 23532(100% der: Male} 75]
High Low Total 2. Subj Context p-value Price	7116(92%) 7722(33%) population of s t={State: NY, F e=7.72e-05 ; NN Income <\$50K	15119(96%) 15810(67%) size 2,198 Cace: Black, Gen 4I=[0.0040, 0.09 Income >=\$50K	22235 (94% 23532(100% der: Male} 75] Total
High Low Total 2. Subj Contex p-value Price High	7116(92%) 7722(33%) population of s t={State: NY, F e=7.72e-05 ; NN Income <\$50K 52 (4%)	15119(96%) 15810(67%) size 2,198 Cace: Black, Gen 4I=[0.0040, 0.09 Income >=\$50K 8 (1%)	22235 (94% 23532(100% der: Male} 75] Total 60 (3%)
High Low Total 2. Subj Context p-value Price High Low	7116(92%) 7722(33%) population of s t={State: NY, F e=7.72e-05 ; NN Income <\$50K 52 (4%) 1201(96%)	15119(96%) 15810(67%) size 2,198 Cace: Black, Gen AI=[0.0040, 0.09 Income >=\$50K 8 (1%) 937(99%)	22235 (94% 23532(100% der: Male} 75] Total 60 (3%) 2138 (97%)

Goal: find most strongly affected user sub-populations

Split into sub-populations with Increasingly strong associations between protected variables and application outputs

10

Association-Guided Decision Trees

- Efficient discovery of contexts with high associations
- Outperforms previous approaches based on *frequent itemset mining*
- Easily interpretable contexts by default
- Association-metric agnostic

Metric	Use Case	
Binary ratio/difference	Binary variables	
Mutual Information	Categorical variables	
Pearson Correlation	Scalar variables	
Regression	High dimensional outputs	
Plugin your own!	???	

• Greedy strategy (some bugs could be missed)

Predictor of whether patient will visit hospital again in next year

12

(from winner of 2012 Heritage Health Prize Competition)

FairTest findings: strong association between age and prediction error rate

(e.g., if model is used to adjust insurance premiums)

Debugging with FairTest

Are there **confounding factors**?

Do associations disappear after conditioning? ⇒ Adaptive Data Analysis!

Example: the healthcare application (again)

- Estimate prediction confidence (target variance)
- Does this **explain** the predictor's behavior?
- Yes, partially

XY

FairTest helps developers understand & evaluate potential association bugs.

Other applications studied using FairTest

- Image tagger based on ImageNet data
 - ⇒ Large output space (~1000 labels)
 - ⇒ FairTest automatically switches to regression metrics
 - ⇒ Tagger has *higher error rate* for pictures of black people

- Simple movie recommender system
 - ⇒ Men are assigned movies with *lower ratings* than women
 - ⇒ Use personal preferences as **explanatory factor**
 - ⇒ FairTest finds no significant bias anymore

14

The Unwarranted Associations Framework

- Captures a broader set of algorithmic biases than in prior work
- Principled approach for statistically valid investigations

FairTest

• The first end-to-end system for evaluating algorithmic fairness

Developers need better statistical training and tools to make better statistical decisions and applications.

http://arxiv.org/abs/1510.02377

Admission into UC Berkeley graduate programs (Bickel, Hammel, and O'Connell, 1975)

Bickel *et al*'s (and also FairTest's) findings: gender bias in admissions at university level, but mostly gone after conditioning on department

FairTest helps developers understand & evaluate potential association bugs.