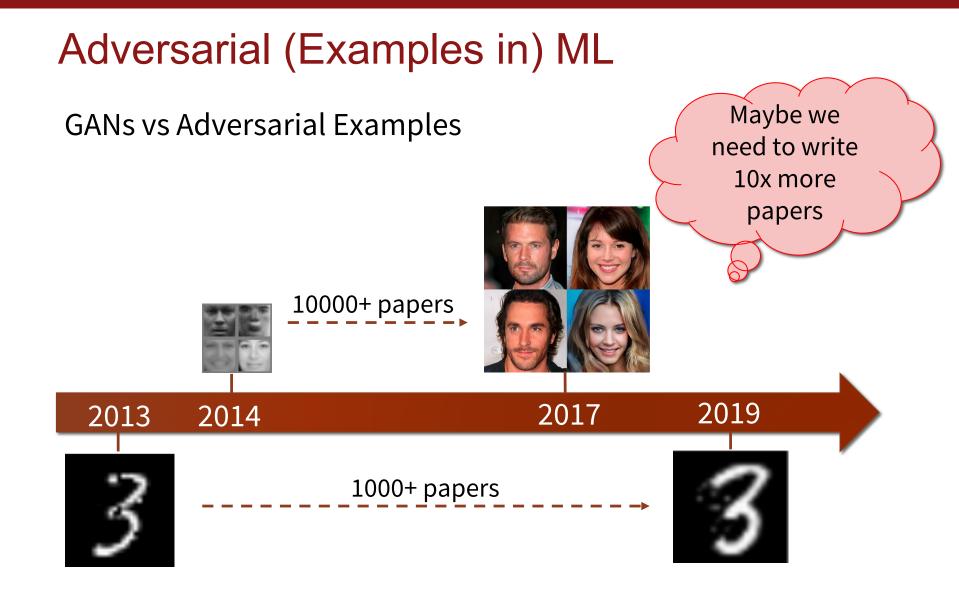
Developments in Adversarial Machine Learning

Florian Tramèr September 19th 2019

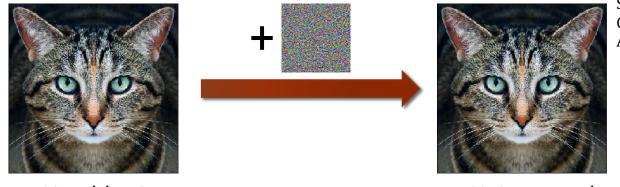
Based on joint work with Jens Behrmannn, Dan Boneh, Nicholas Carlini, Edward Chou, Pascal Dupré, Jörn-Henrik Jacobsen, Nicolas Papernot, Giancarlo Pellegrino, Gili Rusak

Stanford University



N. Carlini, "Recent Advances in Adversarial Machine Learning", ScAINet 2019

Adversarial Examples



Szegedy et al., 2014 Goodfellow et al., 2015 Athalye, 2017

88% Tabby Cat

99% Guacamole

How?

- Training \Rightarrow "tweak model parameters such that f(w) = cat"
- Attacking \Rightarrow "tweak input pixels such that f(w) = guacamole"

Why?

- Concentration of measure in high dimensions? [Gilmer et al., 2018, Mahloujifar et al., 2018, Fawzi et al., 2018, Ford et al., 2019]
- Well generalizing "superficial" statistics? [Jo & Bengio 2017, Ilyas et al., 2019, Gilmer & Hendrycks 2019]

Defenses

- A bunch of failed ones...
- Adversarial Training [Szegedy et al., 2014, Goodfellow et al., 2015, Madry et al., 2018] \Rightarrow For each training input (**x**, **y**), find worst-case adversarial input

Certified Defenses [Raghunathan et al., 2018, Wong & Kolter 2018]
 ⇒ Certificate of provable robustness for each point
 ⇒ Empirically weaker than adversarial training

L_p robustness: An Over-studied Toy Problem?

Neural networks aren't robust.

Consider this simple "**expectimax L**_p" game:

Adversary perturbs point within small L_p ball

Sample random input from test set

Defender classifies perturbed point

2.

3.

2015

This was just a toy threat model ... Solving this won't magically make ML more "secure"

2019 and 1000+ papers later

Ian Goodfellow, "The case for dynamic defenses against adversarial examples", SafeML ICLR Workshop, 2019 5

- 1. Sample random input from test set
 - What if model has 99% accuracy and adversary always picks from the 1%? (test-set attack, [Gilmer et al., 2018])
- 2. Adversary perturbs point within L_p ball
 - Why limit to one L_p ball?
 - How do we choose the "right" L_p ball?
 - Why "imperceptible" perturbations?
- 3. Defender classifies perturbed point
 - Can the defender abstain? (attack detection)
 - Can the defender adapt?

Ian Goodfellow, "The case for dynamic defenses against adversarial examples", SafeML ICLR Workshop, 2019 6

A real-world example of the "expectimax L_p" threat model: Perceptual Ad-blocking

- Ad-blocker's goal: classify images as ads
- Attacker goals:
 - Perturb ads to evade detection (False Negative)
 - Perturb benign content to detect ad-blocker (False Positive)
- 1. Can the attacker run a "test-set attack"?
 - No! (or ad designers have to create lots of random ads...)
- 2. Should attacks be imperceptible?
 - Yes! The attack should not affect the website user
 - Still, many choices other than L_p balls
- 3. Is detecting attacks enough?
 - No! Attackers can exploit FPs and FNs

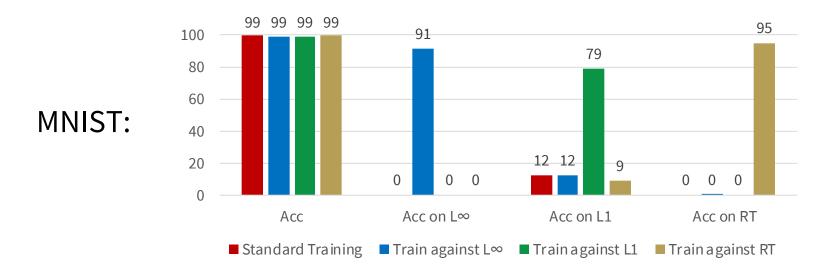
T et al., "AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning", CCS 2019

- 1. Sample random input from test set
- 2. Adversary perturbs point within L_p ball
 - Why limit to one L_p ball?
 - How do we choose the "right" L_p ball?
 - Why "imperceptible" perturbations?
- 3. Defender classifies perturbed point
 - Can the defender abstain? (attack detection)

- 1. Sample random input from test set
- 2. Adversary perturbs point within L_p ball
 - Why limit to one L_p ball?
 - How do we choose the "right" L_p ball?
 - Why "imperceptible" perturbations?
- 3. Defender classifies perturbed point
 - Can the defender abstain? (attack detection)

Robustness for Multiple Perturbations

Do defenses (e.g., adversarial training) generalize across perturbation types?



Robustness to one perturbation type ≠ robustness to all Robustness to one type can increase vulnerability to others

T & Boneh, "Adversarial Training and Robustness for Multiple Perturbations", NeurIPS 2019

The multi-perturbation robustness trade-off

If there exist models with high robust accuracy for perturbation sets $S_1, S_2, ..., Sn$, does there **exist** a model robust to perturbations from $\bigcup_{i=1}^n S_i$?

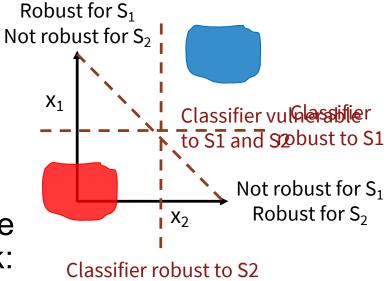
Answer: in general, NO!

There exist "mutually exclusive perturbations" (MEPs)

(robustness to S_1 implies vulnerability to S_2 and vice-versa)

Formally, we show that for a simple Gaussian binary classification task:

- L_1 and L_{∞} perturbations are MEPs
- L_{∞} and spatial perturbations are MEPs



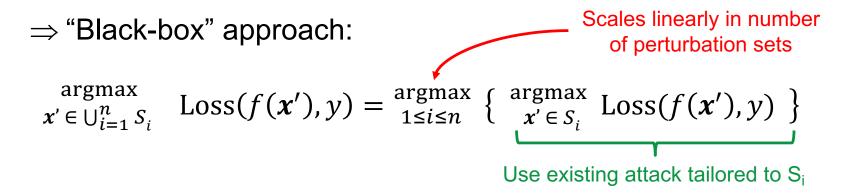
Empirical Evaluation

Can we train models to be robust to multiple perturbation types simultaneously?

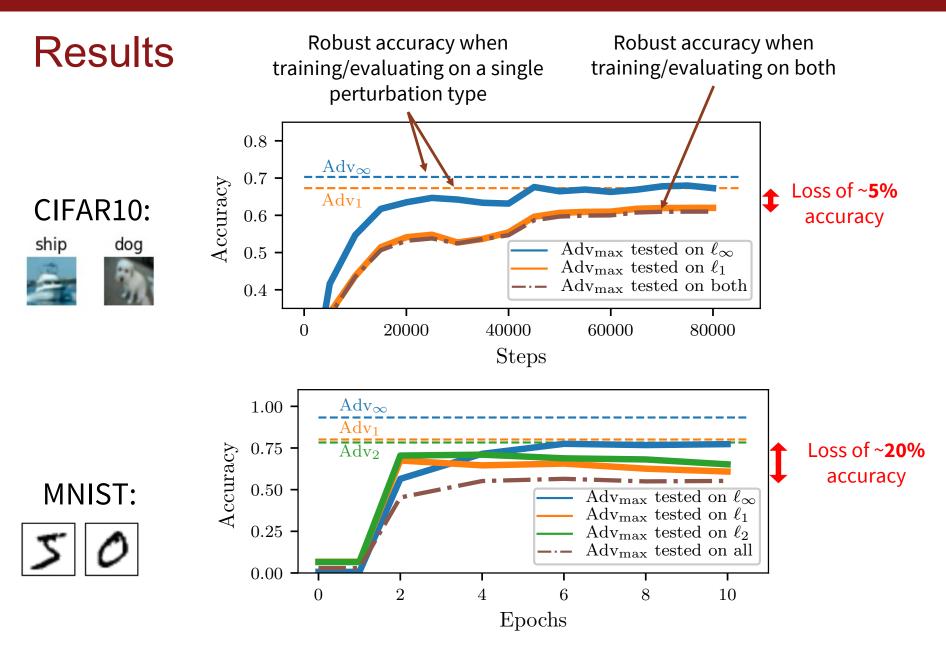
Adversarial training for multiple perturbations:

 \Rightarrow For each training input (**x**, y), find worst-case adversarial input

$$\underset{x' \in \bigcup_{i=1}^{n} S_{i}}{\operatorname{argmax}} \operatorname{Loss}(f(x'), y)$$



T & Boneh, "Adversarial Training and Robustness for Multiple Perturbations", NeurIPS 2019



T & Boneh, "Adversarial Training and Robustness for Multiple Perturbations", NeurIPS 2019

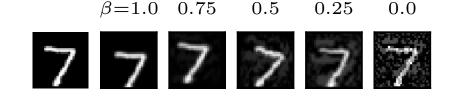
Affine adversaries

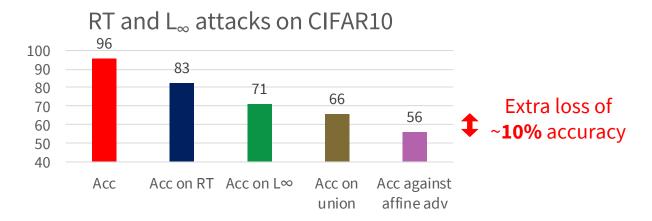
Instead of picking perturbations from $S_1 \cup S_2$ why not combine them?

E.g., small L_1 noise + small L_∞ noise

or small rotation/translation + small L_{∞} noise

Affine adversary picks perturbation from $\beta S_1 + (1 - \beta)S_2$, for $\beta \in [0, 1]$





- 1. Sample random input from test set
- 2. Adversary perturbs point within L_p ball
 - Why limit to one L_p ball?
 - How do we choose the "right" L_p ball?
 - Why "imperceptible" perturbations?
- 3. Defender classifies perturbed point
 - Can the defender abstain? (attack detection)

Invariance Adversarial Examples

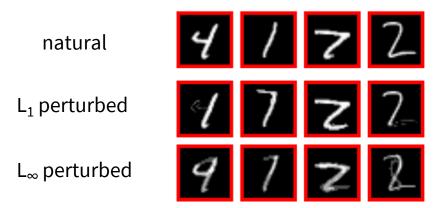
Let's look at MNIST again:

(Simple dataset, centered and scaled, non-trivial robustness is achievable)

5 0 4 /
$$\in \{0, 1\}^{784}$$

Models have been trained to "extreme" levels of robustness (E.g., robust to L_1 noise > 30 or L_∞ noise = 0.4)

 \Rightarrow Some of these defenses are certified!



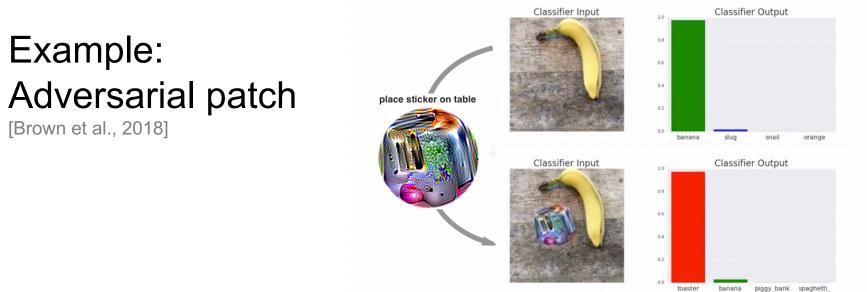
For such examples, humans agree more often with an undefended model than with an overly robust model

- 1. Sample random input from test set
- 2. Adversary perturbs point within L_p ball
 - Why limit to one L_p ball?
 - How do we choose the "right" L_p ball?
 - Why "imperceptible" perturbations?
- 3. Defender classifies perturbed point
 - Can the defender abstain? (attack detection)

New Ideas for Defenses

What would a realistic attack on a cyber-physical image classifier look like?

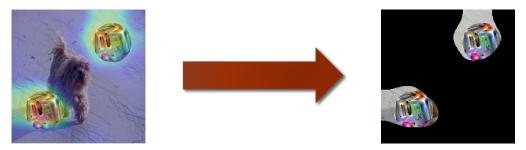
- 1. Attack has to be physically realizable
 - \Rightarrow Robustness to physical changes (lighting, pose, etc.)
- 2. Some degree of "universality"



Can we detect such attacks?

Observation: To be robust to physical transforms, the attack has to be very "salient"

 \Rightarrow Use model interpretability to extract salient regions

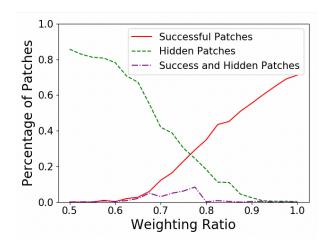


Problem: this might also extract "real" objects ⇒Add the extracted region(s) onto some test images and check how often this "hijacks" the true prediction

Does it work?

It seems so...

 Generating a patch that avoids detection harms the patch's universality



- Also works for some forms of "trojaning" attacks
- But:
 - Very narrow threat model
 - Somewhat complex system so hard to say if we've thought of all attacks

Conclusions

The "expectimax L_p " game has proven more challenging than expected

- We shouldn't forget that this is a "toy" problem
 - Solving it doesn't get us secure ML (in most settings)
- Current defenses break down as soon as one of the game's assumptions is invalidated
 - E.g., robustness to more than one perturbation type
- Over-optimizing a standard benchmark can be harmful
 - E.g., invariance adversarial examples
- Thinking about real cyber-physical attacker constraints
 might lead to interesting defense ideas

Maybe we don't need 10x more papers!