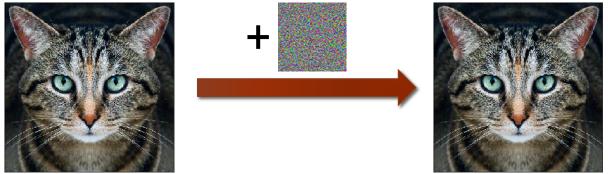

Limitations of Threat Modeling in Adversarial Machine Learning

Florian Tramèr EPFL, December 19th 2019


Based on joint work with Jens Behrmannn, Dan Boneh, Nicholas Carlini, Pascal Dupré, Jörn-Henrik Jacobsen, Nicolas Papernot, Giancarlo Pellegrino, Gili Rusak

Inspired by N. Carlini, "Recent Advances in Adversarial Machine Learning", ScAINet 2019

Adversarial examples

88% Tabby Cat

99% Guacamole

Biggio et al., 2014 Szegedy et al., 2014 Goodfellow et al., 2015 Athalye, 2017

How?

- Training \Rightarrow "tweak model parameters such that f(w) = cat"
- Attacking \Rightarrow "tweak input pixels such that f(w) = guacamole"

The bleak state of adversarial examples

The bleak state of adversarial examples

- Most papers study a "toy" problem Solving it is not useful per se, but maybe we'll find new insights or techniques
- Going beyond this toy problem (even slightly) is hard
- Overfitting to the toy problem happens and is harmful
- The "non-toy" version of the problem is not actually that relevant for computer security (except for ad-blocking)

The bleak state of adversarial examples

- Most papers study a "toy" problem Solving it is not useful per se, but maybe we'll find new insights or techniques
- Going beyond this toy problem (even slightly) is hard
- Overfitting to the toy problem happens and is harmful
- The "non-toy" version of the problem is not actually that relevant for computer security (except for ad-blocking)

The standard game [Gilmer et al. 2018]

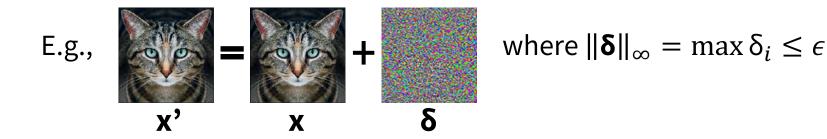
Adversary is given an input **x** from a data distribution

Adversary has some info on model (white-box, queries, data)

ML Model

Adversary produces adversarial example **x**'

Adversary wins if **x**' ≈ **x** and defender misclassifies


Relaxing and formalizing the game

How do we define $\mathbf{x'} \approx \mathbf{x}$?

• "Semantics" preserving, fully imperceptible?

Conservative approximations [Goodfellow et al. 2015]

• Consider noise that is clearly semantics-preserving

- Robustness to this noise is *necessary* but not *sufficient*
- Even this "toy" version of the game is hard, so let's focus on this first

Progress on the toy game

- Many broken defenses [Carlini & Wagner 2017, Athalye et al. 2018]
- Adversarial Training [Szegedy et al., 2014, Madry et al., 2018] \Rightarrow For each training input (**x**, y), train on worst-case adversarial input $\frac{\operatorname{argmax}}{\operatorname{argmax}} + \operatorname{acc}(f(\mathbf{x} + \mathbf{x}), \mathbf{y})$

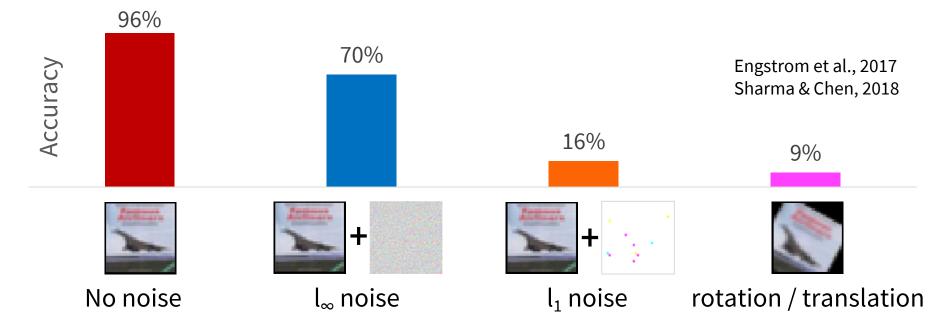
 $\underset{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon}{\operatorname{argmax}} \operatorname{Loss}(f(\boldsymbol{x} + \boldsymbol{\delta}), \boldsymbol{y})$

• Certified Defenses

[Hein & Andriushchenko 2017, Raghunathan et al., 2018, Wong & Kolter 2018]

Progress on the toy game

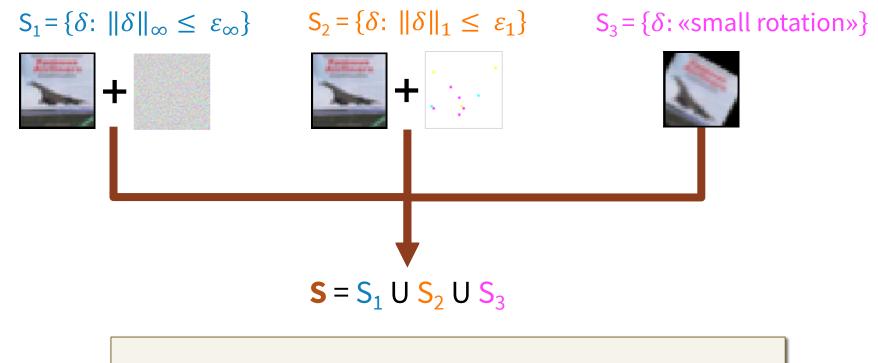
Robustness to noise of small l norm is a "toy" problem each training input (**x**, y), train on worst-case adversarial input Solving this problem is not useful per se, unless it teaches us new insights Solving this problem does not give us "secure ML"


Outline

- Most papers study a "toy" problem
 Solving it is not useful per se, but maybe we'll find new insights or techniques
- Going beyond this toy problem (even slightly) is hard
- Overfitting to the toy problem happens and is harmful
- The "non-toy" version of the problem is not actually that relevant for computer security (except for ad-blocking)

Beyond the toy game

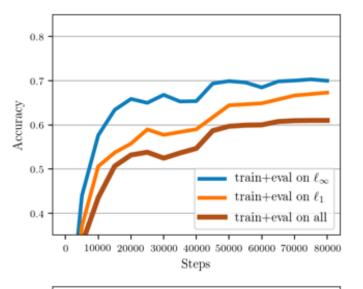
Issue: defenses do not generalize


Example: training against l_{∞} -bounded noise on CIFAR10

Robustness to one type can **increase** vulnerability to others

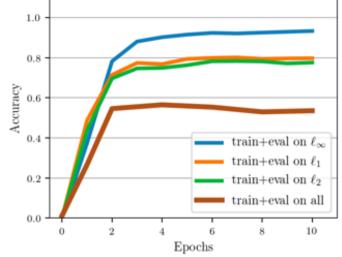
Robustness to more perturbation types

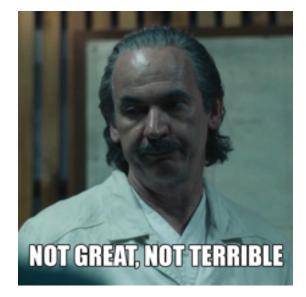
- Pick worst-case adversarial example from S
- Train the model on that example


Empirical multi-perturbation robustness

CIFAR10:

ship





T & Boneh, "Adversarial Training and Robustness for Multiple Perturbations", NeurIPS 2019

Empirical multi-perturbation robustness

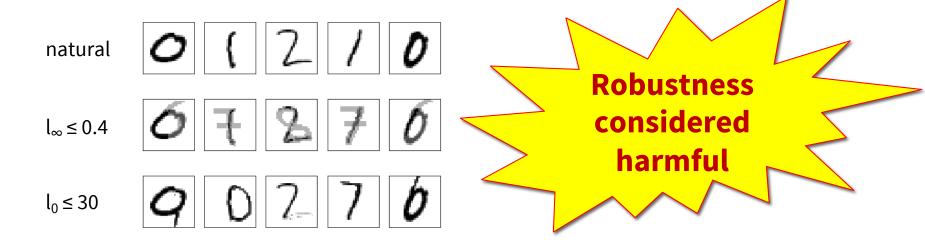
Current defenses scale poorly to multiple perturbations

We also prove that a robustness tradeoff is inherent for simple data distributions

T & Boneh, "Adversarial Training and Robustness for Multiple Perturbations", NeurIPS 2019

Outline

- Most papers study a "toy" problem
 Solving it is not useful per se, but maybe we'll find new insights or techniques
- Going beyond this toy problem (even slightly) is hard
- Overfitting to the toy problem happens and is harmful
- The "non-toy" version of the problem is not actually that relevant for computer security (except for ad-blocking)


Invariance adversarial examples

5 0 4 /
$$\in \{0, 1\}^{784}$$

Highest robustness claims in the literature:

- 80% robust accuracy to $l_0 = 30$
- **Certified** 85% robust accuracy to $l_{\infty} = 0.4$

Jacobsen et al., "Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness", 2019

Invariance adversarial examples

We do not even know how to set the "right" bounds for the toy problem

 $l_0 \leq 30$

acobsen et al., "Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness", 2019

Adversarial examples are hard!

- Most current work: small progress on the relaxed game
- Moving towards the standard game is hard
 - Even robustness to 2-3 perturbations types is tricky
 - How would we even enumerate all necessary perturbations?
- Over-optimizing robustness is harmful
 - How do we set the right bounds?

• We need a formal model of perceptual similarity

• But then we've probably solved all of computer vision anyhow...

Outline

- Most papers study a "toy" problem
 Solving it is not useful per se, but maybe we'll find new insights or techniques
- Going beyond this toy problem (even slightly) is hard
- Overfitting to the toy problem happens and is harmful
- The "non-toy" version of the problem is not actually that relevant for computer security (except for ad-blocking)

Recap on the standard game

Adversary is given an input **x** from a data distribution

Adversary has some info on model (white-box, queries, data)

ML Model

Adversary produces adversarial example **x**'

Adversary wins if **x**' ≈ **x** and defender misclassifies

Recap on the standard game

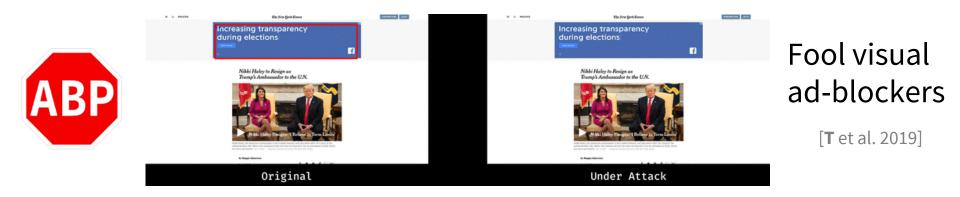
Adversary is given an input **x** from a data distribution

Adversary has some info on model (white-box, queries, data)

There are very few settings where this game captures a relevant threat model

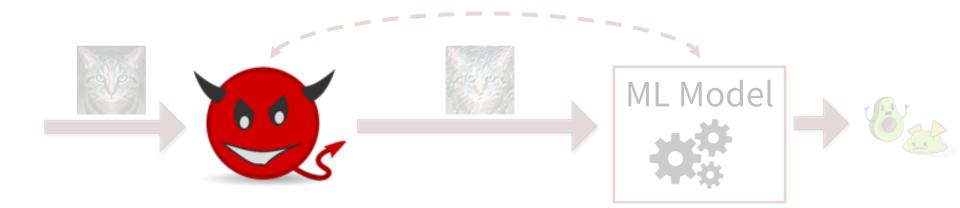
Adversary wins if x' ≈ x and defender misclassifies

ML in security/safety critical environments



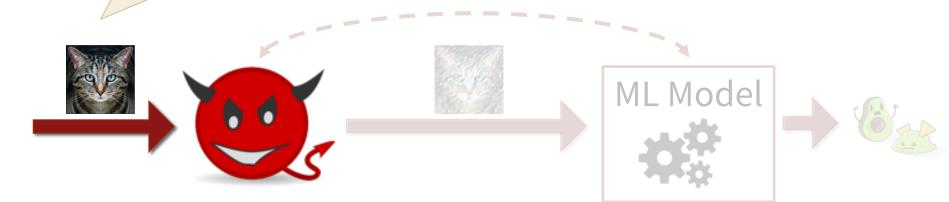
Fool self-driving cars' street-sign detection

[Eykholt et al. 2017+2018]



Is the standard game relevant?

Is the standard game relevant?

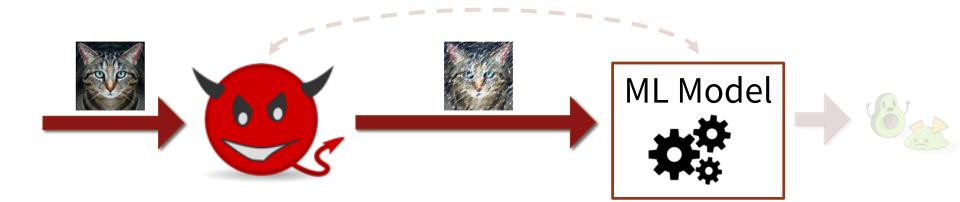


Is there an adversary?

Adversary is given an input **x** from a data distribution

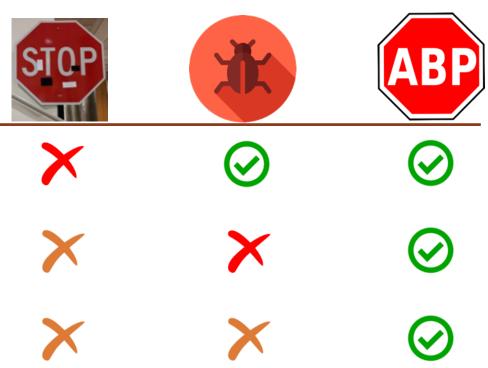
Is the standard game relevant?

Is average-case success important?


Is there an adversary?

(Adv cannot choose which inputs to attack)

Adversary has some info on model (white-box, queries, data)


Adversary wins if **x**' ≈ **x** and defender misclassifies

Is the standard game relevant?

Is there an adversary?

Average-case success?

Access to model?

Should attacks preserve semantics? (or be fully imperceptible)

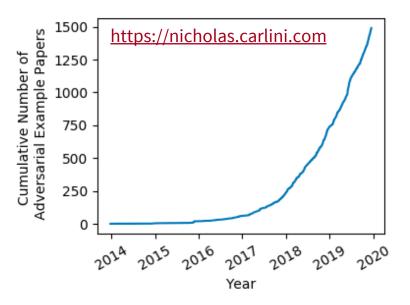
34672 has	hase at 89837888 - abort	
legliff	SYSUER: 0xF0076404	
045678 88 options i rt option	311 Ene Strifter Non mension and the second seco	

Unless the answer to all these questions is *Yes*, the standard game of adversarial examples is not the right threat model

Where else could the game be relevant?

Technology

Inside YouTube's struggles to shut down video of the New Zealand shooting — and the humans who outsmarted its systems



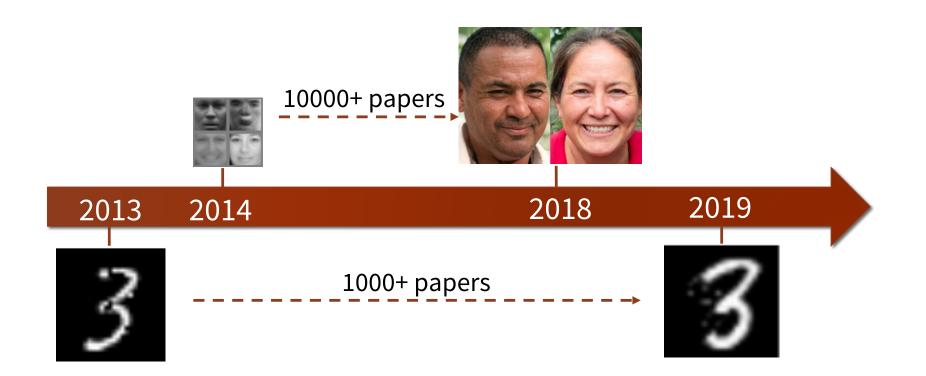
Anti-phishing

Content takedown

Common theme: human-in-the-loop! (Adversary wants to fools ML without disrupting UX)

Steps forward

Most of these papers consider the relaxed game


Progress on this game is not useful **per se**

For safety-critical ML (e.g., self-driving):

- There is no adversary (but worst-case analysis can be useful)
- Consider "natural" perturbations (fog, snow, lighting, angles, etc.)

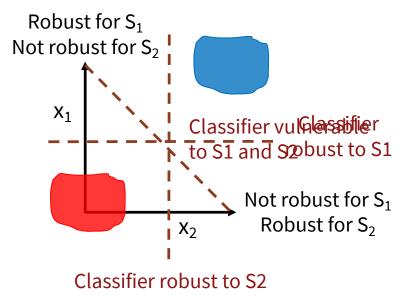
For *real* security-critical ML (e.g., malware detection):

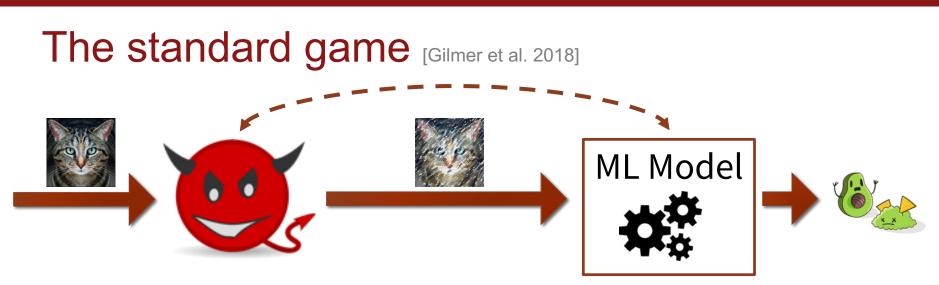
- Attackers often care about breaking in once (analyzing static classifiers is not very useful)
- Security through obscurity (restricted model access) "works" in practice

Maybe we do not need 10x more papers... just the right ones

Backup slides

The multi-perturbation robustness trade-off


If there exist models with high robust accuracy for perturbation sets $S_1, S_2, ..., Sn$, does there **exist** a model robust to perturbations from $\bigcup_{i=1}^n S_i$?


Answer: in general, NO!

There exist "mutually exclusive perturbations" (MEPs) (robustness to S₁ implies vulnerability to S₂ and vice-versa)

Formally, we show that for a simple Gaussian binary classification task:

- l_1 and l_{∞} noise are MEPs
- l_{∞} noise and spatial perturbations are MEPs

- 1. Adversary is given input **x** from some data distribution
- 2. Adversary gets some information on model:
 - Access to model parameters (white-box)
 - Query access
 - Access to similar training data
- 3. Adversary outputs an adversarial example x'
- 4. Defender classifies **x**'

Adversary wins if **x**' ≈ **x** and defender misclassifies