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Machine learning works.
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Machine learning works most of the time!
many applications tolerate occasional failures
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from the Bible (1 Kings 7:2)



Machine learning can also fail disastrously.
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Critical mistakes...



Machine learning can also fail disastrously.
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Critical mistakes...

Direct attacks...



Machine learning can also fail disastrously.
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Critical mistakes...

Direct attacks...

Private data leaks...



Challenge: understand and improve the 
worst-case behavior of machine learning (ML)

Approach: study ML from 
an adversarial perspective
Ø to improve robustness

and privacy of ML in 
adversarial settings

Ø to build ML that is better
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This thesis
Measuring and Enhancing ML security

I. Modeling the threat of adversarial examples
Ø Analysis: fundamental limits of existing defenses
Ø Application: circumventing online content blockers

(led to design changes in Adblock Plus)

II. Enhancing data privacy for ML users
Ø At training time using differential privacy
Ø At test time using hardware enclaves and cryptography
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this talk!



Talk outline.

• Adversarial examples for online content blockers
Ø What’s the threat model?
Ø Limitations of current defenses
Ø Industry impact

• Enhancing ML privacy
• Future work
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What is Machine Learning (ML)?
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build a function (model) that learns how 
to make predictions on new data 

collect some 
“training” data

f	( )	=	“cat”“cat”

“dog”

“pig”
neural network

(sequence of math transforms 
applied to the input to assign a 
”confidence” to each prediction)

,	90%



Adversarial examples: a curious bug in ML
[Szegedy et al. ‘13], [Biggio et al. ‘13], [Goodfellow et al. ‘14], ...
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90% Tabby Cat 100% GuacamoleAdversarial noise



Finding adversarial examples.
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confidence in the 
“Cat” class

Cat
Lynx
Guacamole

Lynx

Guacamole



Why do adversarial examples matter?

For understanding ML
Ø what is the model learning?
Ø why do brittle models generalize?

For security:
Ø will my ML system fail unexpectedly?
Ø can my ML system be attacked?
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Adversarial examples as a computer 
security problem.

T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)
Ø adversarial examples are the perfect tool to attack online content blockers
Ø using ML for ad-blocking can break Web security
Ø this work led to design changes in Adblock Plus
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100M active users



Adversarial examples are a security threat for 
online ad-blocking.
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publishers & 
advertisers want to 

show ads to users...

...users don’t want 
to see ads



Adversarial examples are a security threat for 
online ad-blocking.

users install ad-blockers 
to remove ads...

<BLOCKED>
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Adversarial examples are a security threat for 
online ad-blocking.

users install ad-blockers 
to remove ads...
...using machine 
learning!

<BLOCKED>
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An attacker can use adversarial examples to 
evade content blocking.

adversaries (publishers 
& advertisers) modify 
content to evade 
blocking...
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...without changing 
the user’s visual 

perception of ads



23“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019

For now, the adversary wins!



Adversarial examples can cause harm 
beyond model evasion.
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Jerry uploads 
malicious 
content 

…

… so that 
Tom’s post 

gets blocked

Adblock Plus wants to run a ML model on screenshots of your 
entire Facebook feed. 

“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019



Adversarial examples are a security threat for 
online content blocking.
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Adversarial examples are a security threat for 
online content blocking.
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Ø Industry impact
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Why focus on content blocking?
Many systems can be fooled with adversarial examples.
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content blockers
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Many systems can be fooled with adversarial examples.
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facial recognition

Sharif et al. 2016

content blockers
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facial recognition self-driving

Sharif et al. 2016 Eykholt et al. 2018

content blockers



Why focus on content blocking?
Many systems can be fooled with adversarial examples.
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facial recognition self-driving voice assistants

Sharif et al. 2016 Eykholt et al. 2018 Carlini et al. 2016

Hey Siri!
open 

evil.com

content blockers

http://evil.com/


Why focus on content blocking?
Many systems can be fooled with adversarial examples.
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facial recognition self-driving voice assistants

Sharif et al. 2016 Eykholt et al. 2018 Carlini et al. 2016

Hey Siri!
open 

evil.com

Claim: adversarial examples are “overkill”! 

content blockers

http://evil.com/


Content blockers always operate in the 
presence of a human.
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adversary wants to fool 
the model to get content 

shown to a human

facial recognition self-driving voice assistantscontent blockers



For other systems, security must hold 
whether there is a human observer or not.
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adversary wants to fool 
the model to get content 

shown to a human

facial recognition self-driving voice assistantscontent blockers

adversary wants to 
fool the model...

...and there may be a 
human observer



For such systems, security must also hold 
against “conspicuous” attacks.
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facial recognition



For such systems, security must also hold 
against “conspicuous” attacks.
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self-drivingfacial recognition

Olsson 2019



For such systems, security must also hold 
against “conspicuous” attacks.
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self-drivingfacial recognition



For such systems, security must also hold 
against “conspicuous” attacks.
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self-drivingfacial recognition voice assistants

Alexa, set 
alarm for 

7am!

Olsson 2019



For such systems, security must also hold 
against “conspicuous” attacks.
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facial recognition self-driving voice assistants

Olsson 2019

Alexa, set 
alarm for 

7am!

Content blocking is the only application where “small” 
perturbations are necessary for a successful attack.



Talk outline.
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Ø Limitations of current defenses
Ø Industry impact

• Enhancing ML privacy
• Future work
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Can we build a robust ML model?

“Yes”, but only in a very restrictive “toy” setting,
that has little relevance for practical attacks,
and the best defense only works <50% of the time,
and most defenses don’t work at all.

Short answer: No!
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A formal model for robustness.

44

• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation

ambiguous, hard to formalize



• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations 𝛿 from a fixed set 𝑆

A formal model for robustness.
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necessary but not sufficient 

Example: 𝑆 = 𝛿: 𝛿 ∞ ≤ 20%

max |𝛿𝑖|



• Train a model 𝑓(#) on a distribution 𝔇 of labelled inputs 𝑥, 𝑦

• The adversary perturbs test inputs 𝑥 sampled from 𝔇 with noise 𝛿

Which perturbations 𝜹 do we allow?
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations 𝛿 from a fixed set 𝑆

Ultimate goal: 
- discover defensive techniques that generalize across perturbation sets

A formal model for robustness.
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Example: 𝑆 = 𝛿: 𝛿 ∞ ≤ 20%



The state-of-the-art in robust ML.

MNIST digit classification [LeCun et al., ’98]
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Ø considered “solved” by ML
(>99.5% accuracy)

Ø 0% accuracy when each pixel 
value can be perturbed by 20% 

[Carlini & Wagner., ’17]



Most proposed defenses are broken!
[Carlini & Wagner ’17], [Athalye et al. ’18], [T, Carlini, Brendel, Mądry (NeurIPS 2020)], ...

Ø denoising
Ø randomization
Ø dimensionality reduction
Ø input transformations
Ø generative modeling
Ø Bayesian learning
Ø ...
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Some defenses work.
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• Adversarial training 

• Certified defenses 

[Szegedy et al. ‘13], [Goodfellow et al. ‘14], [Kurakin et al. ‘16], [T et al. ‘17],
[Madry et al. ‘18], [Zhang et al. ‘19], [Carmon et al. ‘19], [Uesato et al. ‘19],
[Zhai et al. ‘19], [Shafahi et al. ‘19], [Yang et al. ‘19], [Li et al. ‘20], ...

[Katz et al. ‘17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18], 
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. ‘18], [Weng et al. ‘19], 
[Baluta et al. ‘19], [Cohen et al. ‘19], [Singh et al. ‘19], [Gluch et al. ‘20], ...



Some defenses work, but don’t generalize...

50

generalizing to richer 
sets hurts robustness

T & Boneh (NeurIPS 2019 spotlight)

defenses overfit to the chosen set
T, Behrmann, Carlini, Papernot, Jakobsen 

(ICML 2020)

• Adversarial training 

• Certified defenses 

recall: we only consider perturbations 𝛿 from a fixed set 𝑆
issue: all defenses above are explicitly tailored to a chosen set 𝑺

[Katz et al. ‘17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18], 
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. ‘18], [Weng et al. ‘19], 
[Baluta et al. ‘19], [Cohen et al. ‘19], [Singh et al. ‘19], [Gluch et al. ‘20], ...

[Szegedy et al. ‘13], [Goodfellow et al. ‘14], [Kurakin et al. ‘16], [T et al. ‘17],
[Madry et al. ‘18], [Zhang et al. ‘19], [Carmon et al. ‘19], [Uesato et al. ‘19],
[Zhai et al. ‘19], [Shafahi et al. ‘19], [Yang et al. ‘19], [Li et al. ‘20], ...



Adversarial training: a defense for a fixed
perturbation set.
[Szegedy et al., ’14], [Goodfellow et al., ‘15], [Madry et al., ’17]
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1. Choose a set 𝑆 of perturbations: e.g., 𝑆 = 𝛿: 𝛿 ∞ ≤ 20%

2. For each input , find the worst adversarial example:

3. Train the model on  

4. Repeat until convergence

max. per-pixel noise

all images in the 
set are classified 

as “1”
𝑆



Defenses fail for noise outside the chosen set.
[Engstrom et al., ’17], [Sharma & Chen, ’18]
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Ø Attack with a perturbation from 𝑆′ = 𝛿: 𝛿 1 ≤ 12

sum of perturbed pixels

𝑆

𝑆′misclassified as “8”



Why not learn to resist multiple noise types?
T & Boneh (NeurIPS 2019 spotlight)
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1. Choose multiple sets of perturbations 𝑆1, 𝑆2, …
2. Train a model against worst perturbation from 𝑆1 ∪ 𝑆2 ∪ …

𝑆1 = 𝛿: 𝛿 ∞ ≤ 20% 𝑆2 = 𝛿: 𝛿 1 ≤ 12

pick worst-case 
noise from 𝑆1

pick worst-case 
noise from 𝑆2

worst from 𝑆1 ∪ 𝑆2



Resisting multiple noise types is costly.
T & Boneh (NeurIPS 2019 spotlight)
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1. Choose multiple sets of perturbations 𝑆1, 𝑆2, …
2. Train a model against worst perturbation from 𝑆1 ∪ 𝑆2 ∪ …
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defend	against	
perturbations	from	S1

defend	against	
perturbations	from	S2

defend	against	
perturbations	from	𝑆1 ∪ 𝑆2

+130% error rate!



Can adversarial training solve adversarial 
examples?
recall our ultimate goal:
defenses that are robust to any “small" perturbation
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Theorem (informal): [T, Behrmann, Carlini, Papernot, Jakobsen, ICML 2020]

Finding a “complete” perturbation set is as hard as building a “perfect” classifier.

Ø adversarial training requires knowing the perturbation set a priori



Take away: we don’t have robust machine 
learning in adversarial settings.
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Take away: we don’t have robust machine 
learning in adversarial settings.
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But, we now have:

1. industry awareness 
of security risks

2. understanding of inherent 
limitations of defenses



Talk outline.

• Adversarial examples for online content blockers
Ø What’s the threat model?
Ø Limitations of current defenses
Ø Industry impact

• Enhancing ML privacy
• Future work
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60



61



62

Goal: detect ad disclosures 
using image hashes

Problem: these techniques 
are not robust either
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ML models are often trained on private data.
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Challenge: models leak their training data.
Carlini, T, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)
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random input

OpenAI’s language model 
trained on text from 8 
million web pages

someone’s contact information 
output by the model 
(redacted for privacy)



Data leaks have dramatic consequences!
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for users...

for companies...



Preventing data leakage with decade-old ML 
T & Boneh (ICLR 2021 spotlight)

Ø provably prevent leakage of training data.
using differential privacy

Extensions: distributed or federated learning 
[Dean et al. ‘12], [McMahan et al. ‘16], [Lian et al. ‘17]

Ø better accuracy than with deep learning methods.
using domain-specific feature engineering
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Differential privacy prevents data leakage.
[Dwork et al. ‘06]

intuition: randomized training algorithm is not influenced 
(too much) by any individual data point
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Pr[𝐴train = ]
Pr[𝐴train = ] ≤ 𝑒!

for any two datasets that 
differ in a single element 



Differentially private learning is possible with 
noisy gradient descent.

Gradient descent

Private gradient descent
[Chaudhuri et al., ‘11], [Bassily et al. ‘14], 
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...
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add noise to each step 
to guarantee privacy
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no privacy

Non-private deep learning can achieve 
near-perfect accuracy.
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“deep learning era”

“shallow” model “deep” model



“deep learning era”

Differentially private deep learning 
lowers accuracy significantly.

73
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“deep learning era”
74

Differentially private deep learning 
lowers accuracy significantly.

−40% accuracy!
worse than pre-
deep learning
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Differential privacy without deep learning 
improves accuracy.
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our work: no deep learning!

“deep learning era”
“Differentially private learning needs better features”, ICLR 2021 spotlight



Privacy-free features from “old-school” 
image recognition.
SIFT [Lowe ‘99, ‘04],  HOG [Dalal & Triggs ‘05], SURF [Bay et al. ‘06], ORB [Rublee et al. ‘11], ...
Scattering transforms: [Bruna & Mallat ‘11], [Oyallon & Mallat ‘14], ...

76

captures some prior about 
the domain: e.g., invariance 

under rotation & scaling

“handcrafted features”
(no learning involved)

privacy free

simple classifier
(e.g., logistic regression)
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"-DiÆerential Privacy
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handcrafted features
deep learning

Handcrafted features lead to a better 
tradeoff between accuracy and privacy.

77“Differentially private learning needs better features”, ICLR 2021 spotlight

Bett
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Handcrafted features lead to an easier
learning task (for noisy gradient descent).
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bad for privacy

in feature space, 
maximal accuracy is 
reduced but learning 

progresses faster

high accuracy 
classifier exists but

learning takes 
many gradient steps

“Differentially private learning needs better features”, ICLR 2021 spotlight

good for privacy



(for ε = 3)
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Surpassing handcrafted features with 
more private data.

“Differentially private learning needs better features”, ICLR 2021 spotlight



CIFAR-10

(for ε = 3)
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Surpassing handcrafted features with 
more private data.

“Differentially private learning needs better features”, ICLR 2021 spotlight



With 10x more private 
data end-to-end deep 
learning performs best

(for ε = 3)
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collecting more 
data is good for 

your privacy!

Surpassing handcrafted features with 
more private data.

“Differentially private learning needs better features”, ICLR 2021 spotlight



Surpassing handcrafted features with 
more public data.
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train a feature extractor 
on public data...

...transfer and fine-
tune on private data

public data

private data
privacy free

“Differentially private learning needs better features”, ICLR 2021 spotlight
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With access to a public dataset, 
privacy comes almost for free!
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5% gap!
with unlabeled ImageNet 

as the public data

“Differentially private learning needs better features”, ICLR 2021 spotlight
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Future work.
ML security is a critical challenge for our society.
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fairness interpretabilityrobustness privacy

how do we make ML trustworthy?



Future work: robustness & privacy
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Intersections:
- Adversarial ML for safeguarding with Evani Radiya-Dixit

or breaching privacy with Nicholas Carlini @ Google 

Scaling private ML:
- Privacy in large NLP models with Percy Liang
- Relaxing differential privacy with Ilya Mironov @ Facebook

Beyond machine learning:
- Robustness & privacy in with Ari Juels @ Cornell

decentralized finance with Kenny Paterson @ ETHZ



Conclusion
ML is currently not trustworthy.

- it is not robust.
- it is not private.

We can get better robustness than current ML.
Ø humans are an existence proof.

We can get better privacy than current ML.
Ø with differential privacy and feature engineering.
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Conclusion
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Thank you!

ML is currently not trustworthy.
- it is not robust.
- it is not private.

We can get better robustness than current ML.
Ø humans are an existence proof.

We can get better privacy than current ML.
Ø with differential privacy and feature engineering.
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Conclusion
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Thank you!

ML is currently not trustworthy.
- it is not robust.
- it is not private.

We can get better robustness than current ML.
Ø humans are an existence proof.

We can get better privacy than current ML.
Ø with differential privacy and feature engineering.


