Measuring and Enhancing the Security of Machine Learning

Florian Tramèr Stanford University

Committee members: Mykel Kochenderfer (chair), Dan Boneh (advisor), Moses Charikar, Percy Liang, Gregory Valiant

Machine learning works.

Machine learning works **most of the time!** many applications tolerate occasional failures

Machine learning can also fail disastrously.

Critical mistakes...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

Machine learning can also fail disastrously.

Critical mistakes...

Direct attacks...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

The New York Times Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

Machine learning can also fail disastrously.

Critical mistakes...

Direct attacks...

Private data leaks...

theguardian Uber crash shows 'catastrophic failure' of self-driving technology, experts say

Ehe New York Eimes Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

Does GPT-2 Know Your Phone Number?

Eric Wallace, Florian Tramèr, Matthew Jagielski, and Ariel Herbert-Voss

Challenge: understand and improve the worst-case behavior of machine learning (ML)

Approach: study ML from an adversarial perspective

- to improve robustness and privacy of ML in adversarial settings
- ➤ to build ML that is better

This thesis

Measuring and Enhancing ML security

I. Modeling the threat of <u>adversarial examples</u>

- > Analysis: fundamental limits of existing defenses
- Application: circumventing online content blockers (led to design changes in Adblock Plus)

II. Enhancing data privacy for ML users

- > At training time using *differential privacy*
- > At test time using *hardware enclaves* and *cryptography*

This thesis

Measuring and Enhancing ML security

- I. Modeling the threat of <u>adversarial examples</u>
 - Analysis: fundamental limits of existing defenses
 - Application: circumventing online content blockers (led to design changes in Adblock Plus)
- II. Enhancing <u>data privacy</u> for ML users
 ➢ At training time using *differential privacy* ➢ At test time using *hardware enclaves* and *cryptography*

This thesis Measuring and Enhancing ML security

- I. Modeling the threat of <u>adversarial examples</u>
 - > Analysis: fundamental limits of existing defenses
 - Application: circumventing online content blockers (led to design changes in Adblock Plus)

II. Enhancing data privacy for ML users

- > At training time using *differential privacy*
- > At test time using *hardware enclaves* and *cryptography*

This thesis

Measuring and Enhancing ML security

I. Modeling the threat of <u>adversarial examples</u>

- Analysis: fundamental limits of existing defenses
- Application: circumventing online content blockers (led to design changes in Adblock Plus)

II. Enhancing data privacy for ML users

- > At training time using differential privacy -
- > At test time using hardware enclaves and cryptography

this talk!

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Talk outline.

Adversarial examples for online content blockers

- What's the threat model?
- Limitations of current defenses
- Industry impact
- Enhancing ML privacy
- Future work

What is Machine Learning (ML)?

collect some "training" data

"cat"

neural network

(sequence of math transforms applied to the input to assign a "confidence" to each prediction)

Adversarial examples: a curious bug in ML

[Szegedy et al. '13], [Biggio et al. '13], [Goodfellow et al. '14], ...

90% Tabby Cat

Adversarial noise

100% Guacamole

Finding adversarial examples.

confidence in the "Cat" class

Cat

Lynx

Guacamole

Why do adversarial examples matter?

For understanding ML ➤ what is the model learning? ➤ why do brittle models generalize?

For security:

- > will my ML system fail unexpectedly?
- > can my ML system be attacked?

Adversarial examples as a computer security problem.

T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)

- > adversarial examples are the **perfect tool** to attack *online content blockers*
- > using ML for ad-blocking can break Web security
- this work led to design changes in Adblock Plus

100M active users

Adversarial examples are a security threat for online ad-blocking.

Adversarial examples are a security threat for online ad-blocking.

Adversarial examples are a security threat for online ad-blocking.

An attacker can use adversarial examples to evade content blocking.

For now, the adversary wins!

"AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning", ACM CCS 2019

Adversarial examples can cause harm beyond model evasion.

Adblock Plus wants to run a ML model on *screenshots* of your entire Facebook feed.

"AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning", ACM CCS 2019

Adversarial examples are a security threat for online *content* blocking.

Adversarial examples are a security threat for online *content* blocking.

Talk outline.

Adversarial examples for online content blockers

- What's the threat model?
- Limitations of current defenses
- Industry impact
- Enhancing ML privacy
- Future work

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

content blockers

content blockers

facial recognition

Sharif et al. 2016

content blockers

facial recognition

Sharif et al. 2016

self-driving

Eykholt et al. 2018

content blockers

facial recognition

Sharif et al. 2016

self-driving

Eykholt et al. 2018

Carlini et al. 2016

voice assistants

Content blockers *always* operate in the presence of a human.

content blockers

facial recognition

self-driving

voice assistants

adversary wants to fool the model to get content shown to a human

For other systems, security must hold whether there is a human observer or not.

For such systems, security must also hold against "conspicuous" attacks.

facial recognition

BUSINESS INSIDER
facial recognition

BUSINESS INSIDER

self-driving

Olsson 2019

facial recognition

BUSINESS INSIDER

self-driving

@karpathy @elonmusk @DirtyTesla here is a fun edge case. My car kept slamming on the brakes in this area with no stop sign. After a few drives I noticed the billboard.

facial recognition

BUSINESS INSIDER

self-driving

Olsson 2019

voice assistants Alexa, set alarm for 7am!

facial recognitionself-drivingvoice assistantsImage: self-drivingImage: self-drivingAlexa, set
alarm for
7am!Image: self-driving

BUSINESS INSIDER

Olsson 2019

Content blocking is the only application where "small" perturbations are *necessary* for a successful attack.

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Talk outline.

- Adversarial examples for online content blockers
 What's the threat model?
 Limitations of current defenses
 Industry impact
 Enhancing ML privacy
- Future work

Can we build a *robust* ML model?

"Yes", but only in a very restrictive "toy" setting, that has little relevance for practical attacks, and the best defense only works <50% of the time, and most defenses don't work at all.

Short answer: No!

A formal model for robustness.

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation

ambiguous, hard to formalize

A formal model for robustness.

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation
- Relaxation: perturbations δ from a *fixed* set S

Example: $S = \{\delta : \|\delta\|_{\infty} \le 20\%\}$

necessary but not sufficient

max $|\delta_i|$

A formal model for robustness.

- Train a model $f(\cdot)$ on a distribution \mathfrak{D} of labelled inputs (x, y)
- The adversary *perturbs* <u>test</u> inputs x sampled from \mathfrak{D} with noise δ

Which perturbations δ do we allow?

- Ideal: any "semantically small" perturbation
- Relaxation: perturbations δ from a **fixed** set S

Ultimate goal:

- discover defensive techniques that generalize across perturbation sets

Example: $S = \{\delta : \|\delta\|_{\infty} \le 20\%\}$

The state-of-the-art in robust ML.

MNIST digit classification [LeCun et al., '98]

considered "solved" by ML (>99.5% accuracy)

➢ 0% accuracy when each pixel value can be perturbed by 20%

[Carlini & Wagner., '17]

Most proposed defenses are broken!

[Carlini & Wagner '17], [Athalye et al. '18], [**T**, Carlini, Brendel, Mądry (NeurIPS 2020)], ...

- denoising
- randomization
- > dimensionality reduction
- > input transformations
- > generative modeling
- > Bayesian learning

Some defenses work.

- Adversarial training
- [Szegedy et al. '13], [Goodfellow et al. '14], [Kurakin et al. '16], [**T** et al. '17], [Madry et al. '18], [Zhang et al. '19], [Carmon et al. '19], [Uesato et al. '19], [Zhai et al. '19], [Shafahi et al. '19], [Yang et al. '19], [Li et al. '20], ...
- Certified defenses
- [Katz et al. '17], [Wong et al. '17], [Raghunathan et al. '18], [Gehr et al. '18], [Lecuyer et al. '18], [Zhang et al. '18], [Mirman et al. '18], [Weng et al. '19], [Baluta et al. '19], [Cohen et al. '19], [Singh et al. '19], [Gluch et al. '20], ...

Some defenses work, but don't generalize...

- Adversarial training [Szegedy et al. '13], [Goodfellow et al. '14], [Kurakin et al. '16], [**T** et al. '17], [Madry et al. '18], [Zhang et al. '19], [Carmon et al. '19], [Uesato et al. '19], [Zhai et al. '19], [Shafahi et al. '19], [Yang et al. '19], [Li et al. '20], ...
- Certified defenses [Katz et al. '17], [Wong et al. '17], [Raghunathan et al. '18], [Gehr et al. '18], [Lecuyer et al. '18], [Zhang et al. '18], [Mirman et al. '18], [Weng et al. '19], [Baluta et al. '19], [Cohen et al. '19], [Singh et al. '19], [Gluch et al. '20], ...

recall: we only consider perturbations δ from a *fixed* set *S*

issue: all defenses above are *explicitly tailored to a chosen set S*

defenses overfit to the chosen set

T, Behrmann, Carlini, Papernot, Jakobsen (ICML 2020)

generalizing to richer sets hurts robustness

T & Boneh (NeurIPS 2019 *spotlight*)

Adversarial training: a defense for a *fixed* perturbation set.

[Szegedy et al., '14], [Goodfellow et al., '15], [Madry et al., '17]

- 1. Choose a set *S* of perturbations: e.g., $S = \{\delta : \|\delta\|_{\infty} \le 20\%\}$
- 2. For each input /, find the *worst* adversarial example:

S

- 3. Train the model on
- 4. Repeat until convergence

all images in the set are classified as "1"

max. per-pixel noise

Defenses fail for noise outside the chosen set.

[Engstrom et al., '17], [Sharma & Chen, '18]

sum of perturbed pixels

Why not learn to resist multiple noise types?

T & Boneh (NeurIPS 2019 *spotlight*)

1. Choose **multiple** sets of perturbations $S_1, S_2, ...$ 2. Train a model against worst perturbation from $S_1 \cup S_2 \cup ...$

Resisting multiple noise types is costly.

T & Boneh (NeurIPS 2019 *spotlight*)

- 1. Choose **multiple** sets of perturbations $S_1, S_2, ...$
- 2. Train a model against worst perturbation from $S_1 \cup S_2 \cup \dots$

Can adversarial training solve adversarial examples?

recall our ultimate goal: defenses that are robust to <u>any</u> "small" perturbation

> adversarial training requires knowing the perturbation set a priori

Theorem (informal): [**T**, Behrmann, Carlini, Papernot, Jakobsen, ICML 2020]

Finding a "complete" perturbation set is as hard as building a "perfect" classifier.

Take away: we <u>don't</u> have robust machine learning in adversarial settings.

THE WALL STREET JOURNAL.

TECH

 \equiv

Facebook, YouTube, Twitter Scramble to Remove Video of New Zealand Mosque Shooting

> MOTHERBOARD TECH BY VICE

Researchers Defeat Most Powerful Ad Blockers, Declare a 'New Arms Race'

Q

Take away: we <u>don't</u> have robust machine learning in adversarial settings.

But, we now have:

1. industry awareness of security risks

2. understanding of inherent limitations of defenses

Talk outline.

- Adversarial examples for online content blockers
 What's the threat model?
 Limitations of current defenses
 Industry impact
 Enhancing ML privacy
- Future work

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Adblock Plus and (a little) more

Sentinel is Online

• 2018-06-27 16:05 by Tom Woolford

Are you ready to feed the machine?

Researchers Defeat Most Powerful Ad Blockers, Declare a 'New Arms Race'

Adblock Plus 3.6.2 is Out and With Interesting Updates

🗼 Adblock Plus

Because of the obvious limitations of Sentinel, we came up with a highly-usable perceptual adblocking approach, in the form of the newly released perceptual hashing snippet. It does not use any machine-learning techniques per se, but it marks a first ever perceptual ad-blocking approach in production, and allows us to grow in an innovative way.

AdChoices 🕞

Goal: detect ad disclosures using image hashes

Problem: these techniques are not robust either

Where are the names

Anonymous Coward an hour ago

Seriously? Where are the names of these scumbags^d researchers. I'm driving down to Stanford, stopping by a Home Depot to pick a 2x4, a bag of lye and a shovel. Will have some very intimate conversations with these "researchers"

Reply Sha Shut down unethical project #1

n impredicative opened this issue 20 days ago · 0 comments

impredicative commented 20 days ago • edited -

• 🙂 •

Florian Tramèr,

This project seems grossly unethical and it should be shut down. Are the department head and dean at Stanford University aware of this unethical work?

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

ML models are often trained on private data.

Challenge: models leak their training data.

Carlini, **T**, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)

Data leaks have dramatic consequences!

for users...

for companies...

The New Hork Times Data Breach Victims Talk of Initial Terror, Then Vigilance

ZDNet

Facebook could face \$1.63bn fine under GDPR over latest data breach

TE TechCrunch

FTC settlement with Ever orders data and Als deleted after facial recognition pivot

Preventing data leakage with decade-old ML

T & Boneh (ICLR 2021 *spotlight*)

provably prevent leakage of training data. using differential privacy

Extensions: distributed or federated learning [Dean et al. '12], [McMahan et al. '16], [Lian et al. '17]

better accuracy than with deep learning methods. using domain-specific feature engineering

Differential privacy prevents data leakage.

[Dwork et al. '06]

intuition: *randomized* training algorithm is not influenced (too much) by any individual data point

 $\frac{\Pr[A_{\text{train}}(\text{ for any two datasets that differ in a single element}]}{\Pr[A_{\text{train}}(\text{ for any two datasets that differ in a single element}]} \leq e^{\varepsilon}$

Differentially private learning is possible with noisy gradient descent.

Gradient descent

Private gradient descent

[Chaudhuri et al., '11], [Bassily et al. '14], [Shokri & Shmatikov '15], [Abadi et al. '16], ... add noise to each step to guarantee privacy

Non-private deep learning can achieve near-perfect accuracy.

Differentially private deep learning lowers accuracy significantly.

Differentially private deep learning lowers accuracy significantly.

Differential privacy *without deep learning* improves accuracy.

Privacy-free features from "old-school" image recognition.

SIFT [Lowe '99, '04], HOG [Dalal & Triggs '05], SURF [Bay et al. '06], ORB [Rublee et al. '11], ... Scattering transforms: [Bruna & Mallat '11], [Oyallon & Mallat '14], ...

"handcrafted features"

(no learning involved)

captures some prior about the domain: e.g., invariance under rotation & scaling

(e.g., logistic regression)

Handcrafted features lead to a better tradeoff between accuracy and privacy.

Handcrafted features lead to an *easier* learning task (for noisy gradient descent).

Surpassing handcrafted features with *more private data*.

Surpassing handcrafted features with more private data.

Surpassing handcrafted features with *more private data*.

Surpassing handcrafted features with *more public data*.

public data

train a feature extractor on public data...

...transfer and finetune on private data

With access to a public dataset, privacy comes almost for free!

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Talk outline.

- Adversarial examples for online content blockers
 - What's the threat model?
 - Limitations of current defenses
 - Industry impact
- Enhancing ML privacy
- Future work

Future work. ML security is a critical challenge for our society.

how do we make ML trustworthy?

Future work: robustness & privacy

Intersections:

- Adversarial ML for safeguarding or breaching privacy

Scaling private ML:

- Privacy in large NLP models
- Relaxing differential privacy

Beyond machine learning:

- Robustness & privacy in decentralized finance with Evani Radiya-Dixit with Nicholas Carlini @ Google

with Percy Liang with Ilya Mironov @ Facebook

with Ari Juels @ Cornell with Kenny Paterson @ ETHZ

Conclusion

ML is currently not *trustworthy*.

- it is not *robust*.
- it is not *private*.

We <u>can</u> get better robustness than current ML. *▶* humans are an existence proof.

We <u>can</u> get better privacy than current ML. *▶* with differential privacy and feature engineering.

Conclusion

ML is currently not *trustworthy*.

- it is not *robust*.
- it is not *private*.

We <u>can</u> get better robustness than current ML. *▶* humans are an existence proof.

We <u>can</u> get better privacy than current ML. *▶* with differential privacy and feature engineering.

Acknowledgments

Many! external collaborators (somewhat chronological since 2017)

Especially fruitful collaborations.

Ari Juels Cornell Tech

Nicolas Papernot University of Toronto

Nicholas Carlini Google

beard

100%

Stanford collaborators.

Giancarlo Pellegrino

Gili Rusak

Blanca Villanueva

Edward Chou

Evani Radiya-Dixit

Stanford's amazing staff.

- Ruth Harris
- Megan Harris
- Jay Subramanian
- Jam Kiattinant
- Rolando Villalobos

CS Department

- Bechtel International Center

The crypto group, past & present.

The CS-355 staff + students!

David Wu Henry Corrigan-Gibbs Sam Kim

Dima Kogan

Saba Eskandarian

Katy Woo

Amazing and infinite sources of advice.

Jean-Pierre Hubaux EPFL

Ari Juels Cornell Tech

Nicolas Papernot University of Toronto

Kenny Paterson ETHZ

Henry Corrigan-Gibbs MIT

Giancarlo Pellegrino CISPA

Ludwig Schmidt University of Washington

Committee members.

Mykel Kochenderfer Moses Charikar

Percy Liang

Gregory Valiant

My advisor: Dan Boneh

Friends & Family

BEST DAY EVER

Helen & Tom

My parents & brothers

Mariël

Socially-distant lunch party.

 Meet at noon – Escondido Village basketball courts (in front of McFarland, next to Tennis courts)

• Food, drinks & fun

Conclusion

ML is currently not *trustworthy*.

- it is not *robust*.
- it is not *private*.

We <u>can</u> get better robustness than current ML. *▶* humans are an existence proof.

We <u>can</u> get better privacy than current ML. *▶* with differential privacy and feature engineering.

