Differential Privacy with Bounded Priors:

Reconciling Utility and Privacy in Genome-Wide Association Studies

Florian Tramèr, Zhicong Huang, Erman Ayday, Jean-Pierre Hubaux

ACM CCS 2015 Denver, Colorado, USA October 15, 2015

Outline

- Data Privacy and Membership Disclosure
 - Differential Privacy
 - Positive Membership Privacy
 - Prior-Belief Families and Equivalence between DP and PMP
- Bounded Priors
 - Modeling Adversaries with Limited Background Knowledge
 - Example: Inference Attacks for Genome-Wide Association Studies
- Evaluation
 - Perturbation Mechanisms for GWAS
 - Trading Privacy, Medical Utility and Cost

Differential Privacy^{1,2}

- Belonging to a dataset ≈ Not belonging to it
- A mechanism \mathcal{A} provides ε -DP iff for any datasets T_1 and T_2 differing in a single element, and any $S \subseteq \text{range}(\mathcal{A})$, we have:

$$\Pr[\mathcal{A}(T_1) \in S] \leq e^{\epsilon} \cdot \Pr[\mathcal{A}(T_2) \in S]$$

Unbounded DP T₁ T₂

Bounded DP

¹ Dwork. "Differential privacy". Automata, languages and programming. 2006

² Dwork et al. "Calibrating Noise to Sensitivity in Private Data Analysis". TCC'06. 2006

Positive Membership Privacy¹

- Data Privacy: protection against membership disclosure
 - Adversary should not learn whether an entity from a universe $\mathcal{U} = \{t_1, t_2, ...\}$ belongs to the dataset T

- Privacy: posterior belief ≈ prior belief for all entities
- Impossible in general! (no free lunch)

¹ Li et al. "Membership privacy: a unifying framework for privacy definitions". CCS '13. 2013

Prior Belief Families¹

- Adversary's prior belief: Distribution \mathcal{D} over $2^{\mathcal{U}}$
- Range of adversaries: Distribution family D
- A mechanism \mathcal{A} satisfies $(\varepsilon, \mathbb{D})$ -PMP iff for any $S \subseteq \text{range}(\mathcal{A})$, any prior distribution $\mathcal{D} \in \mathbb{D}$, and any entity $t \in \mathcal{U}$, we have

$$\Pr[t \in T \mid \mathcal{A}(T) \in S] \le e^{\epsilon} \cdot \Pr[t \in T]$$

$$\Pr[t \notin T \mid \mathcal{A}(T) \in S] \ge e^{-\epsilon} \cdot \Pr[t \notin T]$$

¹ Li et al. "Membership privacy: a unifying framework for privacy definitions". CCS '13. 2013

$PMP \Leftrightarrow DP^1$

- Mutually Independent Distributions:
 - $-\mathcal{D} \in \mathbb{D}_{l}$: each entity t is in T, **independently** with probability p_{t}
 - $-\mathcal{D}$ ∈ \mathbb{D}_B : Same as above, conditioned on |T|=k, for some k
 - ⇒ Adversary also **knows the size** of the dataset T
 - Theorem:

$$\epsilon$$
 - unbounded - DP \Leftrightarrow (ϵ, \mathbb{D}_I) - PMP ϵ - bounded - DP \Leftrightarrow (ϵ, \mathbb{D}_B) - PMP

We focus on bounded DP (results hold for unbounded case)

¹ Li et al. "Membership privacy: a unifying framework for privacy definitions". CCS '13. 2013

Outline

- Data Privacy and Membership Disclosure
 - Differential Privacy
 - Positive Membership Privacy
 - Prior Belief Families and Equivalence between DP and PMP

Bounded Priors

- Modeling Adversaries with Limited Background Knowledge
- Example: Inference Attacks for Genome-Wide Association Studies

Evaluation

- Perturbation Mechanisms for GWAS
- Trading Privacy, Medical Utility and Cost

Bounded Priors

• Observation: \mathbb{D}_B includes adversarial priors with **arbitrarily** high certainty about all entities:

$$\Pr[t \in T] \in \{0, 1\}, \ \forall t \neq t' \in \mathcal{U}$$
$$\Pr[t' \in T] \in (0, 1)$$

- Do we care about such strong adversaries?
 - All entities except t' have no privacy a priori (w.r.t membership in T)
 - The membership status of t' can also be known with high certainty
 - Membership is extremely rare / extremely likely
 - Or adversary has strong background knowledge
 - How do we model an adversary with limited a priori knowledge?

Bounded Priors

- We consider adversaries with the following priors:
 - Entities are independent (size of dataset possibly known)
 - Pr[t ∈ T] ∈ {0,1} for some entities
 - Adversary might know membership status of some entities
 - a ≤ Pr[t ∈ T] ≤ b for other entities, where a>0 and b<1
 - For an "unknown" entity, membership status is uncertain a priori
 - Denoted $\mathbb{D}_{B}^{[a,b]}$ (or \mathbb{D}_{B}^{a} if a=b)
- Questions:
 - Is the model relevant in practice ?
 - What utility can we gain by considering a relaxed adversarial setting?

Bounded Priors In Practice: Example

- Genome-Wide Association Studies:
 - Case-Control study (typically $N_{case} = N_{ctrl}$)
 - Membership in case group
 ⇔ patient has some disease
 - Find out which genetic variations (SNPs) are associated with disease
 - Ex: χ^2 test for each SNP (low p-value \Leftrightarrow conclude SNP is probably associated)
- Re-identification attacks^{1,2}:
 - Collect published aggregate statistics for the case/control groups
 - Use a victim's DNA sample & statistical testing to distinguish between:
 - **H**₀: victim is not in case group
 - H₁: victim is in case group (victim has the disease)
 - Assumptions (some implicit):
 - N_{case} & N_{ctrl} are known (usually published)
 - Entities are independent
 - Prior: Pr[t ∈ T] = N_{case} / (N_{case} + N_{ctrl}) ⇒ typically ½ in attack evaluations
 - Attacks taken seriously! (some statistics removed from open databases)³

¹Homer et al. "Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays". PLoS genetics. 2008

² Wang et al. "Learning Your Identity and Disease from Research Papers: Information Leaks in Genome Wide Association Study". CCS '09. 2009

³ Zerhouni and Nabel. "Protecting aggregate genomic data". Science. 2008

Achieving PMP for Bounded Priors

Recall:

$$\epsilon$$
-DP \Leftrightarrow (ϵ, \mathbb{D}_B) -PMP

• $(\varepsilon, \mathbb{D}_B)$ -PMP:

$$\Pr[t \in T \mid \mathcal{A}(T) \in S] \le e^{\epsilon} \cdot \Pr[t \in T]$$

$$\Pr[t \notin T \mid \mathcal{A}(T) \in S] \ge e^{-\epsilon} \cdot \Pr[t \notin T]$$

- These inequalities are tight iff Pr[t ∈ T] ∈ {0,1}
 - For bounded priors (Pr[t ∈ T] ∈ [a,b]) we have:

$$\epsilon$$
-DP $\Rightarrow (\epsilon', \mathbb{D}_B^{[a,b]})$ -PMP, where $\epsilon' < \epsilon$

- Perturbation required to achieve ε-PMP depends on [a,b]
- Minimal perturbation required when $a = b = \frac{1}{2}$

Privacy – Utility Tradeoff

- If we consider **bounded adversaries** with prior in $\mathbb{D}_{B}^{[a,b]}$ instead of **adversaries** with prior in \mathbb{D}_{B} :
 - Are we still protecting against relevant threats? ✓
 - ⇒ Attacks proposed on GWAS
 - Can we gain in utility? ✓
 - ⇒ Less data perturbation required
 - ⇒ Actual gain to be evaluated

Outline

- Data Privacy and Membership Disclosure
 - Differential Privacy
 - Positive Membership Privacy
 - Prior Belief Families and Equivalence between DP and PMP
- Bounded Priors
 - Modeling Adversaries with Limited Background Knowledge
 - Example: Inference Attacks for Genome-Wide Association Studies
- Evaluation
 - Perturbation Mechanisms for GWAS
 - Trading Privacy, Medical Utility and Cost

Evaluation

- Statistical Privacy for GWAS:
 - Laplace / Exponential mechanisms based on χ^2 scores^{1,2}
 - Exponential mechanism with specialized distance metric³
- Tradeoffs:
 - 1. Privacy Mitigate inference attacks
 - **2. Output Utility** Associated SNPs should be output
 - **3. Dataset Size** Privacy and **Cost** depend on number of patients
- What we want to achieve:
 - **1. ε-PMP** for:
 - The adversarial setting of Homer et al., Wang et al.
 - Compared to an unbounded adversary
 - **2. High probability** of outputting the correct SNPs
 - 3. Also for small studies $(N \approx 2000)^4$

¹ Uhler, Slavkovic, and Fienberg. "Privacy-Preserving Data Sharing for Genome-Wide Association Studies". Journal of Privacy and Confidentiality. 2013

² Yu et al. "Scalable privacy-preserving data sharing methodology for genome-wide association studies". Journal of biomedical informatics. 2014

³ Johnson and Shmatikov. "Privacy-preserving Data Exploration in Genome-wide Association Studies". KDD '13. 2013

⁴ Spencer et al. "Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip". PLoS genetics. 2009

Evaluation

- GWAS simulation with 8532 SNPs, 2 associated SNPs
 - Variable sample size N $(N_{case} = N_{ctrl})$
 - Satisfy PMP for $\varepsilon = \ln(1.5)$
 - Mechanism A protects against adversary with unbounded prior \mathbb{D}_B
 - A must satisfy ε-DP
 - Mechanism \mathcal{A}' protects against adversary with bounded prior \mathbb{D}_{B}^{2}
 - It is sufficient for \mathcal{A}' to satisfy ε' -DP for $\varepsilon' = \ln(2)$
 - Exponential mechanism from¹:

¹ Johnson and Shmatikov. "Privacy-preserving Data Exploration in Genome-wide Association Studies". KDD '13. 2013

Conclusion

- Membership privacy is easier to guarantee for adversaries with bounded priors
 - Less perturbation ⇒ Higher utility
 - For GWAS: Better tradeoff between dataset size and utility of output
- We can tailor privacy mechanisms to specific attacks/threats
 - Can we make reasonable assumptions on the adversary's prior beliefs?
 - For GWAS: known attacks implicitly rely on such assumptions
 - Compute appropriate level of noise to guarantee bounds on adversary's posterior beliefs
- Future Work:
 - Can we build stronger inference attacks on GWAS?
 - ⇒ Infer "rare" membership (disease status is typically rare in a population)
 - \Rightarrow Known attacks are less successful when prior $Pr[t \in T]$ is very small¹
 - Direct comparison: attack success rate vs. data perturbation (utility)²
 - ⇒ Promote a "practice-oriented" study of statistical privacy

¹ Sankararaman et al. "Genomic privacy and limits of individual detection in a pool." Nature genetics. 2009

² Fredrikson et al. "Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing." Proceedings of USENIX Security. 2014