
MEASURING AND ENHANCING THE SECURITY OF MACHINE LEARNING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Florian Tramèr
August 2021

This dissertation is online at: https://purl.stanford.edu/yz747qq9787

© 2021 by Florian Simon Tramer. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

https://purl.stanford.edu/yz747qq9787

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Boneh, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Gregory Valiant

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The surprising failure modes of machine learning systems threaten their viability in security-critical
settings. For example, machine learning models are easily fooled by adversarially chosen inputs, and
have the propensity to leak the sensitive data of their users.

In this dissertation, we introduce new techniques to proactively measure and enhance the security
of machine learning systems. We begin by formally analyzing the threat posed by adversarial
examples to the integrity of machine learning models. We argue that the security implications
of these attacks has been overstated for many applications, yet demonstrate one application where
these attacks are indeed realistic—for evading online content moderation systems. We then show that
existing defense techniques operate in fundamentally limited threat models, and therefore cannot
hope to prevent realistic attacks.

We further introduce new techniques for protecting the privacy of users of machine learning
systems—both at training and deployment time. For training, we show how feature engineering
techniques can substantially improve differentially private learning algorithms. For deployment,
we design a system that combines hardware protections and cryptography to privately outsource
machine learning workloads to the cloud. In both cases, we protect a user’s sensitive data from
other parties while achieving significantly better utility than in prior work.

We hope that our results will pave the way towards a more rigorous assessment of machine
learning models’ vulnerability against evasion attacks, and motivate the deployment of efficient
privacy-preserving learning systems.

iv

to Mariël

v

Acknowledgments

I don’t quite recall why I originally wanted to do a PhD. I had done some research before graduate
school, and loved some aspects of it but resented others. Ultimately, I knew that I had really enjoyed
my time in school so far, and it thus felt like a good idea to extend this a bit. Various sources of
online advice for prospective graduate students will warn you that this is the worst possible reason
to want to do a PhD, and that you’ll likely struggle a lot as a consequence. Given how things turned
out, I’d conclude that: (1) most “advice” you find online is bad; (2) none of this would have been
possible without the tremendous help and motivation I’ve received along the way.

First and foremost, I want to thank my advisor Dan Boneh for his invaluable guidance through-
out my PhD. From the first day, Dan encouraged me to pursue research in an emerging area that
neither of us had much familiarity with, and gave me absolute freedom and support to develop
my own research interests and collaborations. Dan’s relentless optimism, passion for research, and
genuine trust in my own abilities have shaped me into a more confident and independent researcher.
I strive to show my own future students the same freedom, conviction, and kindness.

The fellow students and visiting researchers from the Applied Cryptography Group have been
great colleagues and friends during these past five years. Despite working in a somewhat orthog-
onal field, I received amazing feedback and learned a great deal about research from all of them:
Alex Ozdemir, Ben Fisch, Benedikt Bünz, Benton Case, David Wu, Dima Kogan, Giancarlo Pel-
legrino, Henry Corrigan-Gibbs, Kamil Kluczniak, Lucjan Hanzlik, Neil Perry, Riad Wahby, Saba
Eskandarian, Sam Kim, Sergio Benitez and Yan Michalevsky.

Benedikt, Dima, Saba and I started our PhDs at the same time, and it is incredible to look back
at how far we’ve come as researchers and friends. I feel that we all drove each other to become more
ambitious and effective researchers. They’ve always been there for incredible advice and ideas, for
office gossip over coffee, or to listen to me ranting on some random topic over dinner or a drink.

I also want to extend a special thanks to Henry, who has been a constant source of guidance and
inspiration. Regardless of the topic (what to research or teach, and how; how to write and present;
where to live and work) or the setting (office, café or ski slope), Henry always seems to have a very

vi

principled opinion to share, and I don’t think I’ve ever gone wrong by heeding it.
My research collaborations with Giancarlo have taught me a lot on how to shape research projects

and advise students. I’ve had the chance to apply these lessons when advising projects with some
amazing students: Blanca Villanueva, Edward Chou, Evani Radiya-Dixit and Gili Rusak. A project
with Gilli and Giancarlo, as well as Pascal Dupré, forms the basis of Chapter 3 of this dissertation.

My co-instructors for CS355—David Wu, Dima Kogan, Henry Corrigan-Gibbs, Katy Woo, Saba
Eskandarian and Sam Kim—have taught me (and our students) everything there is to know about
modern cryptography. Our (overly) long debates about course contents and learning objectives have
helped me become a more engaged and effective teacher.

I’ve been able to count on the technical and moral support from many of Stanford’s faculty
members over the years. Greg Valiant, Moses Charikar and Percy Liang sat on the committee for
my dissertation defense and have been great sources of research inspiration at various times during
my PhD. I thank Mykel Kochenderfer for enthusiastically agreeing to chair my defense committee.
On multiple occasions, David Mazières, John Mitchell, Matei Zaharia, Omer Reingold and Zakir
Durumeric have given me extremely helpful feedback and candid criticism on my research and talks.

The staff in Gates always made sure to take care of any issues that would threaten to distract
me from my research (and there were many)! Megan Harris and Ruth Harris handled everything
from research supplies, office arrangements, travel reimbursements—always with the utmost kind-
ness. Jam Kiattinant and Angela Cao made sure that my funding was always in order, and Jay
Subramanian was there at all times to give great advice about the PhD requirements and various
visa issues I would encounter along the way. Their help has been invaluable.

My research collaborators outside Stanford have surprisingly become too numerous to list here.
I owe a great deal of thanks for this to Nicolas Papernot, who visited Stanford shortly after I started
my PhD, and became a close collaborator and friend. Nicolas introduced me to many people over
the years who would later became collaborators. His determination and optimism in research are
inspiring and I could always count on incredible advice from him.

In the later stage of my PhD, I developed a very fruitful collaboration with Nicholas Carlini. I’ve
learned a great deal from Nicholas about conducting rigorous and fair attack-oriented research. His
relentless confidence and determination remain an incredible motivator. The work in Chapter 5 of
this dissertation was done jointly with Nicolas, Nicholas, Jens Behrmann and Jörn-Henrik Jacobsen.

Kenny Patterson hosted me for a refreshing (albeit incredibly hot) summer at ETH Zürich. As
Kenny was just starting a lab, I think I spent more time interacting with him during those three
months than with any other collaborator over the entire duration of my PhD. In large parts due to
his advice and support, I will soon be joining him as a colleague!

In the last year of my PhD, passionate discussions with Ilya Mironov were instrumental in helping

vii

me partially shift my research focus, and inspired the work in Chapter 6 of this dissertation.
Before graduate school, Serge Vaudenay, Ola Svensson and Jean-Pierre Hubaux introduced me

to research in Computer Science, and helped me develop a broad foundation in cryptography, theory
and privacy that drives my research today. The year in which Jean-Pierre hosted me at EPFL before
beginning my PhD remains one of my most productive and rewarding to date, and his continued
support and advice throughout my academic career have been amazing.

I could always count on Ari Juels to share incredibly creative and interesting research ideas. Our
early work on model stealing attacks with Fan Zhang, Michael Reiter and Tom Ristenpart ultimately
drove me down the road of machine learning security that this dissertation is all about. I was also
lucky to continue collaborating with Ari throughout my PhD, and our work provided refreshing
breaks away from the world of machine learning when I needed them.

I want to thank Aleksander Mądry, Carmela Troncoso, and Ludwig Schmidt for a lot of valuable
counsel and insights about the academic job search in the past year.

I would have never managed to get through with this PhD if not for the incredible moral support
from all my family and friends. I was lucky to make some amazing friends at Stanford that have
made sure to pull me away from work as often as possible for campus parties, roadtrips, camping
adventures, and holidays. A special thanks to Begum & Tanay, Faidra & Kostis, Marie & Yannaï,
Olivia & Toby and Tal & Dima for the unforgettable adventures we’ve had together.

When traveling for work or heading back home on vacation, I could always count on my friends
for an eventful combination of dinners, sleepovers, parties, weddings and newborns. A huge thanks
to all of them: Adrien, Axel, Christophe, Christelle & François, Conti & Eamon, Danee, Imke &
Peter, Izatti & Daniel, Karin & Erik, Kristof, Florence & Axel, Laura & Romain, Lucille & Joachim,
Maryam & Salman, Marceline & Timothée, Melissa & Sacha, Naomi & Romain, Titus, Saviz and
Yonathan. I reserve a special thought for my dear friend Adrien Gaudard—in loving memory.

Helen and Tom Gracon were guardian angels that offered housing, food, time and constant
professional and life advice. As I write this, it has become painfully clear that settling in after an
international move is a lot more challenging when they aren’t around to help. Thanks for everything!

In addition to all my family members, who always made sure I was well fed around Christmas
season, I want to warmly thank Oscar, Annemiek, Dorine and Elsa for welcoming me into their
family, and for their genuine support and wonderful hospitality over the years.

I want to thank my parents, Claudia & Martin, and my brothers, Joël & Lucas, who have
encouraged and supported me for as far as I can remember. My early education instilled the skills
that have made this PhD possible—a love for learning and reading, a decent mastery of English,
and above all, perseverance. I cannot thank my parents enough for everything they’ve done for me.

Finally of course, thank you Mariël, quite simply for being there every step of the way. This
dissertation is dedicated to you.

viii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1
1.1 Overview of Results . 2
1.2 Machine Learning Background . 9

I The Security Threat of Adversarial Examples 13

2 The Threat Model of Adversarial Examples 15
2.1 The Expectimax Game . 16
2.2 Adversarial Examples As a Necessary Attack Vector 18
2.3 Choosing a Perturbation Set . 19

3 A Security Application: Evading Perceptual Ad-blockers 21
3.1 Preliminaries and Background . 24

3.1.1 The Online Advertising Ecosystem . 24
3.1.2 Perceptual Ad-blocking . 24
3.1.3 Threat Model and Adversaries . 26

3.2 Designing Perceptual Ad-blockers . 27
3.2.1 General Architecture . 27
3.2.2 Approaches to Ad Detection . 28

3.3 Training a Page-based Ad-blocker . 30
3.3.1 Data Collection . 30
3.3.2 Evaluation and Results . 31

3.4 Evaluating the Robustness of Perceptual Ad-blocking 33
3.4.1 Evaluation Setup . 34

ix

3.4.2 Accuracy and Performance of ML classifiers. 36
3.5 Attacking Ad Classifiers With Adversarial Examples 36

3.5.1 Attack Model . 37
3.5.2 Overview of Attack Techniques and Results 37
3.5.3 Algorithms for Adversarial Examples . 39
3.5.4 Results . 40

3.6 Attacks Beyond Misclassification . 44
3.6.1 Attacks Against Ad-blocker Actions . 44
3.6.2 Attacks Against Page Segmentation . 46
3.6.3 Attacks Against Training . 48

3.7 Discussion . 48
3.7.1 A New Arms Race . 48
3.7.2 Strategic Advantage of Adversaries and Lack of Defenses 49
3.7.3 Beyond the Web and Vision . 49

3.8 Related Work . 50
3.9 Conclusion . 51

4 Limitations of Defenses: Multiple Perturbation Types 52
4.1 Theoretical Limits to Multi-perturbation Robustness 55

4.1.1 Adversarial Risk for Multiple Perturbation Models 55
4.1.2 A Binary Classification Task . 56
4.1.3 Small `∞ and `1 Perturbations are Mutually Exclusive 56
4.1.4 Small `∞ and Spatial Perturbations are Nearly Mutually Exclusive 58
4.1.5 Affine Combinations of Perturbations . 62

4.2 New Attacks and Adversarial Training Schemes . 67
4.3 Experiments . 69

4.3.1 Results on MNIST . 71
4.3.2 Results on CIFAR-10 . 71
4.3.3 First-order Adversarial Training and Gradient Masking on MNIST 73
4.3.4 Affine Adversaries . 74

4.4 Discussion and Open Problems . 75

5 Limitations of Defenses: Excessive Invariance 77
5.1 Norm-bounded Sensitivity and Invariance Attacks 79
5.2 The Sensitivity and Invariance Tradeoff . 81
5.3 Generating Invariance-based Adversarial Examples on MNIST 83

5.3.1 Generating Model-agnostic Invariance-based Adversarial Examples 84
5.3.2 Evaluation . 86

x

5.3.3 Trading Perturbation-robustness for Invariance-robustness 89
5.3.4 Natural Images . 91

5.4 The Overly-robust Features Model . 92
5.4.1 Formal Model and Analysis . 92
5.4.2 Experiments . 94

5.5 Discussion . 95
5.6 Conclusion . 96
5.7 Complete Set of Invariance Adversarial Examples . 98

II Privacy-Preserving Machine Learning 102

6 Differentially Private Learning With Better Features 107
6.1 Preliminaries . 109

6.1.1 Scattering Networks . 109
6.1.2 Differentially Private Stochastic Gradient Descent 111
6.1.3 Differentially Private ScatterNet Classifiers 112

6.2 Evaluating Private ScatterNet Classifiers . 113
6.2.1 Experimental Setup . 114
6.2.2 Model Architectures . 116
6.2.3 Results . 117
6.2.4 Analysis of Hyper-parameters . 119

6.3 How Do Handcrafted Features Help? . 120
6.3.1 Smaller Models Are Not Easier to Train Privately 121
6.3.2 Models With Handcrafted Features Converge Faster Without Privacy 121

6.4 Towards Better Private Deep Learning . 122
6.4.1 Improving Privacy by Collecting More Data 124
6.4.2 Transfer Learning: Better Features from Public Data 125

6.5 Additional Experiments . 127
6.5.1 On the Effect of Batch Sizes in DP-SGD . 127
6.5.2 Comparing DP-SGD and Privacy Amplification by Iteration 129
6.5.3 DP-SGD With Poisson Sampling . 131

6.6 Conclusion and Open Problems . 131

7 Slalom: Faster Private Inference With Trusted Hardware 133
7.1 Background . 134

7.1.1 Problem Setting . 134
7.1.2 Trusted Execution Environments (TEEs), Intel SGX, and a Strong Baseline . 135
7.1.3 Outsourcing Outsourced Neural Networks and Freivalds’ Algorithm 137

xi

7.2 Formal Security Definitions . 138
7.3 Slalom . 140

7.3.1 Quantization . 140
7.3.2 Verifying Common Linear Operators . 142
7.3.3 Input Privacy . 144

7.4 Empirical Evaluation . 145
7.4.1 Implementation . 145
7.4.2 Setup . 146
7.4.3 Neural Network Details . 147
7.4.4 Results . 147
7.4.5 Results on a Standard CPU . 151
7.4.6 Parallelization . 151

7.5 Challenges for Verifiable and Private Training . 152
7.6 Conclusion . 153

III Conclusion 154

xii

List of Tables

3.1 Attack strategies on perceptual ad-blockers . 33
3.2 Evaluation of ad-classifiers . 34
3.3 Evaluation data for attacks on perceptual ad-blockers 35

4.1 Evaluation of MNIST models trained on Linf, L1, L2 and RT attacks 71
4.2 Evaluation of CIFAR-10 models trained on Linf, L1 and RT attacks 72
4.3 Breakdown of all attacks on MNIST models . 72
4.4 Breakdown of all attacks on CIFAR-10 models . 73
4.5 Evaluation of affine attacks . 74

5.1 Success rate of invariance adversarial examples against humans 87
5.2 Agreement between models and humans on invariance adversarial examples 88
5.3 Model accuracy on sensitivity-based adversarial examples 89
5.4 Robust accuracy as a function of perturbation size during training. 90

6.1 Accuracy of differentially private models with handcrafted ScatterNet features 108
6.2 Effect of feature normalization on the accuracy of non-private ScatterNet models . . 113
6.3 Hyper-parameters for the evaluation of differentially private classifiers 115
6.4 Architecture of end-to-end CNNs . 116
6.5 Architecture of CNN models fine-tuned on ScatterNet features 117
6.6 Test accuracy for models trained without privacy . 117
6.7 Accuracy variability across hyper-parameters . 119
6.8 Number of trainable parameters per model . 121
6.9 Comparison of small and large CIFAR-10 CNNs . 121
6.10 Comparison of DP-SGD with Poisson sampling and random shuffling. 131

7.1 Security guarantees and performance of different ML outsourcing schemes 137
7.2 Complexity of evaluating and verifying linear functions 143
7.3 Details of models used to evaluate Slalom . 146

xiii

List of Figures

2.1 The expectimax security game for adversarial examples 16

3.1 Ad-blocker privilege hijacking . 23
3.2 The AdChoices logo . 24
3.3 The architecture of a perceptual ad-blocker . 27
3.4 Perceptual ad-blocking elements . 30
3.5 Activation maps of a page-based ad-blocker . 32
3.6 Adversarial examples for element-based classifiers . 40
3.7 Adversarial examples for frame-based classifiers . 41
3.8 Attack on the Percival browser . 42
3.9 Code snippet for universal evasion attack . 43
3.10 Universal adversarial examples for page-based ad-blockers on BBC.com 44
3.11 Universal adversarial examples for page-based ad-blockers 45
3.12 CSS obfuscation on Facebook.com . 46
3.13 Image sprites of the AdChoices logo . 47
3.14 Adversarial audio waveform . 50

4.1 Multi-robustness trade-off on MNIST and CIFAR-10 54
4.2 Performance of the Sparse L1 Descent Attack for different choices of descent directions 69
4.3 Gradient masking for an adversarially trained MNIST model 74
4.4 Illustration of affine attacks . 75

5.1 Decision boundaries and invariance-based adversarial examples 78
5.2 Illustration of distance-oracle misalignment . 81
5.3 An `p norm fails to measure semantic similarity in images 83
5.4 Process for generating `0 invariant adversarial examples 85
5.5 Invariance-based adversarial examples on MNIST . 87
5.6 Higher noise-robustness leads to higher vulnerability to invariance attacks 91
5.7 Robust accuracy against an affine adversary . 95

xiv

5.8 Model-human agreement on successful invariance adversarial examples 96

6.1 Privacy-accuracy tradeoffs for ScatterNet classifiers 118
6.2 Median and maximum test accuracy with one hyper-parameter fixed 120
6.3 Convergence rates of private and non-private models 123
6.4 Trade-off between model accuracy and the size of the training set 126
6.5 Privacy-utility tradeoffs for transfer learning on CIFAR-10 127
6.6 Noise scale as a function of the sample rate . 128
6.7 Convergence rate of DP-SGD for different batch sizes 129
6.8 Comparison of noise scales for DP-SGD and Privacy Amplification by Iteration . . . 130
6.9 Privacy-accuracy tradeoffs for DP-SGD and Privacy Amplification by Iteration . . . 130

7.1 The Slalom algorithms for verifiable and private neural network inference 141
7.2 Micro benchmarks on Intel SGX. 147
7.3 Verifiable and private inference with Intel SGX . 148
7.4 Secure outsourcing of ResNet models with Intel SGX 149
7.5 Micro benchmarks on an untrusted CPU . 150
7.6 Inference with integrity and privacy on an untrusted CPU 151
7.7 Multi-threaded micro benchmarks on an untrusted CPU 152

xv

Chapter 1

Introduction

Data-driven decision systems—powered by recent and ongoing advances in deep learning—are set to
play a central role in areas as diverse as self-driving [18], computer security [13], healthcare [72, 157],
messaging [38] or smart home assistants [209].

Each of these applications faces clear security risks. For example, violations of the integrity
of machine learning systems represents a major concern when these systems are deployed in ad-
versarial settings. While deep learning models can extract rich statistical patterns that match or
exceed human performance on a number of perceptual tasks, these models are surprisingly brit-
tle to manipulation. Imperceptible perturbations to a model’s inputs (during training [16, 44] or
evaluation [17, 95, 246]) can cause a model to produce arbitrarily incorrect outputs.

By virtue of being inherently driven by data (the “new oil” [68]), machine learning systems also
raise a number of concerns for the privacy of their users. Indeed, building machine learning models
often requires collecting and aggregating large amounts of sensitive user information such as medical
images, personal messages or driving itineraries. Even if users entrust this information to the party
that provides the machine learning system, their data could still leak to other users of the same
system [31, 32, 235].

It is thus imperative to develop techniques to proactively mitigate these security and privacy
risks. Yet, as a necessary first step, we must develop frameworks and tools to measure the extent to
which these threats apply to existing systems. This dissertation addresses both of these challenges,
by proposing new approaches for measuring and enhancing the security of machine learning.

In the first part of this dissertation, we qualitatively and quantitatively assess the risk of evasion
attacks on deployed machine learning models. We formally analyze the threat model of a widely
popularized class of attacks called adversarial examples [246], minimally perturbed inputs that
fool machine learning systems. We show that data-driven content blocking systems on the Web
are uniquely predisposed to these attacks, and that existing defense techniques are fundamentally

1

CHAPTER 1. INTRODUCTION 2

inadequate for preventing realistic threats.
In the second part of this dissertation, we develop techniques to protect the privacy of machine

learning users. We propose new learning paradigms that provably prevent leaking of users’ training
data (using the guarantees of differential privacy [66]), while achieving significantly higher utility
than in prior work. We further design a system, Slalom, that efficiently outsources machine learning
workloads to a remote untrusted cloud, while preserving the privacy of the user’s requests.

Overall, the results in this dissertation paint two contrasting pictures. On the one hand, en-
hancing the integrity of machine learning systems remains by-and-large an unsolved problem. As
a result, certain security-critical applications of machine learning (for example for content blocking
on the Web) will likely remain out of reach for the foreseeable future. On the other hand, we show
that it is possible to design learning systems with strong privacy guarantees, at only moderate costs
in performance.

1.1 Overview of Results

Part I: The Security Threat of Adversarial Examples

In the first part of this dissertation, we study the security threat posed by adversarial examples [17,
95, 246], maliciously perturbed inputs that cause machine learning models to fail. While prior
work had doubted the relevance of these attacks in concrete security-relevant settings [89, 185],
we demonstrate a compelling application of adversarial examples for evading content-moderation
systems on the Web. We then introduce and analyze two intrinsic limitations of current defenses
against adversarial examples, which limit the usefulness of these defenses in practice.

On threat models. The term “adversarial example”—introduced in the seminal work of Szegedy
et al. [246]—has at times been used to refer to any type of adversarially manipulated input of a
machine learning model [94]. This generic characterization is hard to work with, however, as it defines
adversarial examples in terms of their malicious usage rather than in terms of intrinsic properties of
these examples. In this dissertation, we will work with a more pragmatic and widely-used definition
of adversarial examples: given a classifier f and an input x (sampled from some underlying data
distribution), an adversarial example for x is a perturbed input x̂ that is misclassified by f , and that
is perceptually “close” to x. Building classifiers that are robust to small perturbations of their inputs
is a major unsolved challenge in machine learning today (as we will see, formalizing the notion of
perceptual closeness is a major challenge in itself).

The study of adversarial examples is often motivated by the application of machine learning
in security-sensitive or safety-critical applications. For example, prior work has shown that small
perturbations to street signs could cause a self-driving car to crash [73, 74]; imperceptible audio
commands can trigger voice assistants [28, 29]; and small printed noise patterns can fool facial

CHAPTER 1. INTRODUCTION 3

recognition software [228].
In Chapter 2, we define a formal threat model for adversarial examples, which is often left implicit

in the literature. This threat model is characterized by a security game between a challenger (who
builds a model) and an adversary (who aims to attack the model). Our formalization borrows from
the prior work of Gilmer et al. [89] and Goodfellow [93].

We then argue that for the above security-sensitive applications (i.e., self-driving, voice assis-
tants or facial recognition), the threat model of adversarial examples is unnecessarily restrictive.
Adversarial examples are typically but one (relatively complex) way for an adversary to breach a
system’s security or safety properties, and are by no means a necessary attack vector. In particular,
the implicit restriction that an adversary can only add “small” perturbations to inputs is rather
artificial. For example, an attacker could show a (real) STOP sign in their rear window to halt a
self-driving car that is tailing them; play a malicious TV ad with a perfectly audible command that
triggers a voice assistant when the owner is inattentive; or wear a prosthetic face-mask to bypass
facial recognition systems [223]. In all of these scenarios, the attacker may succeed by showing
arbitrary out-of-distribution inputs to a machine learning system.

A (real) security application: evading perceptual ad-blockers. The work we present in
Chapter 3 is thus motivated by the following question:

Is there a security-sensitive task where an adversary is constrained to apply small per-
turbations to inputs when attempting to evade a classifier?

What should such a task look like? First, there must be a human-in-the-loop: the attacker’s goal
should be to evade a classifier while ensuring that any human observer is oblivious to the attack (if
there is no human observer, it is not clear what prevents the attacker from using an arbitrary input).
Second, there must exist some distribution over inputs that the attacker cannot control (otherwise,
the attacker can just pick an arbitrary misclassified input, a so-called “test-set attack” [89]).

We show that the task of content moderation on the Web perfectly matches this threat model.
In this task, the goal of a machine learning model is to automatically filter and block online content
that may be undesirable for users, e.g., advertisements or offensive media. In turn, an attacker’s
goal is to take an input intended to be shown to users, and minimally modify that input so that it
bypasses detection—a perfect use-case for adversarial examples!

Our study in Chapter 3 focuses on the use of machine learning for online ad-blocking. The
growing use of ad-blockers such as Adblock Plus and uBlock has sparked a fierce arms race with
publishers and advertising networks. Departing from the classical and brittle approach of detecting
ads based on metadata, Storey et al. [244] first proposed the concept of a perceptual ad-blocker, that
uses computer vision to emulate the way in which humans visually detect ads. If effective, such an
ad-blocker would mark the end of the arms race, with the ad-blockers claiming victory. Over the

CHAPTER 1. INTRODUCTION 4

past years, popular ad-blockers such as Adblock Plus [203, 272] and the Brave browser [261] have
experimented with the incorporation of perceptual signals.

We demonstrate that all machine learning algorithms that have been considered for perceptual
ad-blocking can be evaded using imperceptible adversarial examples. These algorithms range from
classical computer-vision techniques such as perceptual hashing to deep neural networks. The vul-
nerability of ad classifiers is exacerbated by the fact that ad-blockers operate client-side. An attacker
can thus get full access to the ad-blocker code, and to the parameters of its machine learning models.

Our attacks can be used by web publishers or advertising networks to evade an ad-blocker with
arbitrary ad content, without affecting the end-users’ perception of the ads or of other web content.
We show how to create perturbations that (1) can be encoded as valid HTML elements; (2) are
robust to content changes outside of the adversary’s control (i.e., perturbed ads evade blocking on
any page where they appear); and (3) scale to thousands of pages and ads.

We further show that perceptual ad-blocking creates new web vulnerabilities. Specifically, we
demonstrate a content hijacking attack wherein one user of a social media platform (e.g., Facebook)
posts malicious content that fools an ad-blocker into blocking other users’ content on the platform.

Our attacks show that perceptual techniques will not mark the end of the ad-blocking arms race,
as long as machine learning models remain vulnerable to perceptually small adversarial examples.

Limitations of defenses. Building an attack-resistant model for perceptual ad-blocking (or for
other content moderation tasks) would require building a model that resists adversarial examples.
Yet, building such a defense is a remarkably challenging problem. And it is not for a lack of trying:
a large number of heuristic defense approaches have been proposed and have successively been
broken [6, 26, 27, 258].

A first challenge is to formalize what it means for a defense to be robust. Our definition of an
adversarial example above states that a perturbed input must be “perceptually close” to the original
input. Yet, for many data types of interest, such as natural images, we do not know how to formally
characterize perceptual similarity between inputs. Instead, prior work has opted to approximate
this definition by considering only specific explicitly-defined distance metrics. A common approach
is to aim for robustness against perturbations from a well-defined small set (e.g., all perturbations
within some small `p ball [95, 159]).

Prior work has shown successful techniques for training classifiers that are robust to small per-
turbations from such a fixed set [71, 159, 207, 271]. In particular, adversarial training [159, 246]
produces models with strong (empirical) robustness guarantees. Moreover, certified defenses [53, 83,
146, 207, 271] even achieve provable (but empirically weaker) robustness guarantees.

Despite this tremendous progress, these defense techniques cannot currently improve the prac-
tical security of machine learning models deployed in adversarial settings—such as the perceptual
ad-blockers that form the subject of Chapter 3. Indeed, in Chapter 4 and Chapter 5, we highlight
fundamental limitations of current defenses against adversarial examples. In fact, we show that

CHAPTER 1. INTRODUCTION 5

existing defenses may achieve robustness to perturbations that is neither sufficient nor necessary.

In Chapter 4, we introduce the problem of training neural networks that are robust to multiple
types of small perturbations. Prior work has focused on building models that are robust (either
empirically or provably) to adversarial perturbations from a single fixed set, e.g., perturbations of
small `∞ norm [159, 207, 271]. While these models do attain some robustness to perturbations
from this set, they remain entirely vulnerable to other types of small perturbations. For example,
adversarial training against perturbations of small `∞ norm yields no robustness to perturbations
of small `1 norm [230], and actually increases a model’s vulnerability. This leads us to the central
problem considered in Chapter 4:

How can we achieve adversarial robustness to different perturbation types simultaneously?

To gain intuition about this problem, we first study a simple and natural synthetic classification
task. We show that for this task, some perturbation types (e.g., perturbations of small `∞ norm or
of small `1 norm) are mutually exclusive. That is, increasing robustness to one type of perturbations
necessarily implies decreasing robustness to the other. The existence of such a trade-off for this
simple synthetic classification task may explain its prevalence in more complex statistical settings.

To complement our formal analysis, we introduce new adversarial training schemes for multiple
sets of small perturbations. Our best-performing scheme augments a model’s training data with
worst-case perturbations from the union of these sets. We experimentally show that models trained
against multiple perturbation types fail to achieve robustness competitive with that of models trained
on each perturbation type individually. In particular, for the task of classifying handwritten dig-
its [145], we find that a model trained to be robust to perturbations of small `∞, `1 or `2 norm
achieves only 50% robust accuracy. Thus, even this simple task is far from solved in a robust sense.

In summary, despite recent successes in achieving robustness to single perturbation types, many
obstacles remain towards scaling existing techniques to richer combinations of small perturbations.

In Chapter 5, we take a step back and ask another seemingly benign question with far-reaching
implications for the design of defenses against adversarial examples:

How large of a perturbation set should our models be made robust to?

A model clearly cannot be robust to unbounded perturbations, as these can change one object
(e.g., a cat) into an object from another class (e.g., a dog). Prior work has mainly side-stepped this
issue, because most defenses only scale to perturbations that are far too small to be perceptible to
humans. Such defenses thus remain overly sensitive to small input perturbations.

For simple tasks such as digit classification, current defenses do achieve robustness to larger
perturbations (of a single type). However, we show that by “over-optimizing” their robustness to
perturbations, some defenses become excessively invariant to real semantics of the underlying task.

CHAPTER 1. INTRODUCTION 6

In Chapter 5 we expose a fundamental tradeoff between a model’s sensitivity and invariance. We
find that by decreasing a model’s sensitivity to small perturbations, current defenses simultaneously
increase a model’s vulnerability to a different class of attacks, called invariance attacks [120]. Such
an attack applies a large perturbation that changes an input’s human-assigned label, but keeps the
model’s prediction unchanged.

We introduce new algorithms to craft invariance attacks of bounded `p norm, and illustrate
the above tradeoff for a standard digit classification task. We show that state-of-the-art robust
models disagree with human labelers on many of our crafted invariance-based attacks, and that the
disagreement rate is higher the more “robust” a model is.

We further break a provably-robust digit classifier [286] with our attack. This defense is certified
to have high accuracy (with respect to a digit’s original label) under any perturbation that changes
an input’s pixel values by up to 40%. That is, given a handwritten digit ‘9’, the model is guaranteed
to predict the class ‘9’ for any image obtained by changing the original digit’s pixel values by at
most 40%. Yet, we show that it is possible to build a perturbation within this norm-bound that
transforms the image into a digit ‘8’, according to a cohort of human labelers. Overall, we find
that the model’s agreement with human labelers on our invariance attacks is no better than chance.
Thus, while the defense’s proof of robustness is mathematically correct, it does not imply that the
model’s predictions are actually in agreement with human perception.

Our takeaway from the first part of this dissertation is that robustness to adversarial examples
remains by-and-large an unsolved problem in machine learning today. Despite some initial progress in
making models robust to restricted types of perturbations, existing defense techniques are inherently
limited in their ability to tackle adversarial inputs in their full generality. As a result, we posit that
machine learning models that are deployed alongside human users in an adversarial setting (e.g., for
content blocking on the Web) will remain prime targets for adversarial examples in the future.

Part II: Privacy-preserving Machine Learning

The second part of this dissertation is concerned with machine learning algorithms that protect the
privacy of their users. In contrast to adversarial robustness—the subject of the first half of this
dissertation—the task of protecting privacy enjoys much stronger formal foundations developed over
the past decades [66, 85, 91, 92]. We build upon these foundations and introduce techniques and
systems for preserving user privacy, while achieving significantly higher performance (either model
accuracy, or speed) compared to prior work.

What does it mean for machine learning to be private? Using a machine learning system
typically requires users to share their data with other parties. For example, the data of multiple
users could be aggregated to train a joint model. When the model is trained, users may have to send

CHAPTER 1. INTRODUCTION 7

their data to a remote service in order to obtain predictions. There are different ways to define user
“privacy” in such a context. We distinguish between two orthogonal and complementary notions of
privacy that we call respectively secure computation and differential privacy.

Secure computation refers to a cryptographic notion of privacy, which asks that the protocols
used to train or deploy a model emulate “ideal” protocols wherein the users only interact with a
trusted third party [91]. For example, a user could receive predictions from a remote service without
the remote service provider learning anything about the user’s data. In addition, multiple users
could securely train a joint model without an adversary learning anything about each user’s data,
other than what can be inferred from the output of the protocol itself (i.e., the trained model). Yet,
trained models do actually leak a lot of information about individual users’ data [31, 32, 81, 235].
Thus, secure computation is not a sufficiently strong notion of user privacy for training machine
learning models.

Differential privacy [66], in turn, asks that whatever an adversary can infer about a user’s data, it
could have also inferred even if the user had not participated in the protocol. Differential privacy is a
very useful notion of privacy for training machine learning models: it permits learning generalizable
facts about a population (e.g., how to detect cancer cells in a lung scan), but prevents the inference
of individual-level facts (e.g., John Doe’s cancer scans were used to train the model) [66].

Prior work has shown how to use differential privacy to train neural networks that do not leak
individual users’ data [1, 198, 234], and how to use secure computation to allow users to privately
receive predictions from a trained model [87, 88, 126, 174]. However, in both cases, privacy comes
at a heavy cost. Differentially private training results in large drops in model accuracy, whereas
protocols for secure computation incur high communication and computation costs.

In the second part of this dissertation, we introduce new techniques for differentially private
training that significantly improve model accuracy compared to prior work. We further describe
Slalom, a system for secure outsourcing of neural network predictions that is orders-of-magnitude
faster than prior systems.

Differentially private learning with better features. Training deep neural networks with
differential privacy comes at a significant cost in utility [1, 10, 76, 284]. In fact, on many machine
learning benchmarks the accuracy of private deep learning still falls short of “shallow” (non-private)
techniques that rely on handcrafted features [52, 187, 188]. This leads to the central question we
address in Chapter 6:

Can differentially private learning benefit from handcrafted features?

We answer this question affirmatively by introducing simple and strong handcrafted baselines for
differentially private learning. For example, on the CIFAR-10 benchmark [141] we exceed the best
accuracy reported in prior work while simultaneously improving the provable privacy guarantee by

CHAPTER 1. INTRODUCTION 8

130×. Our results show that private deep learning remains outperformed by handcrafted priors on
many tasks, and thus has yet to reach its “AlexNet moment” [142].

Considering these results, which additional resources may we need in order to outperform our
handcrafted baselines? We first investigate whether collecting more private training data could
help. Indeed, protecting a user’s privacy becomes easier as the size of the training data increases,
as each user’s relative contribution to the final model is decreased. Thus, given a large enough
private training set, we should expect deep learning to outperform our handcrafted baselines. For
CIFAR-10, we find that about an order of magnitude additional private training data is needed,
before end-to-end deep models outperform our handcrafted features baselines.

Second, we consider complementing a private training set with a larger public dataset from a
similar domain. For example, suppose that we want to train a model on medical scans from hospital
patients. Instead of privately training a deep neural network from scratch, we could leverage image
features extracted from large public image datasets such as ImageNet [61]. This process is commonly
known as transfer learning [210]. While differentially private transfer learning has been studied in
prior work [1, 197], we find that its privacy-utility guarantees have been severely underestimated.
We revisit these results and show that with transfer learning, strong privacy can come at only a
minor cost in accuracy.

Overall, we demonstrate that higher quality features—whether handcrafted or transferred from
public data—are of paramount importance for improving the performance of private classifiers.

Slalom: Faster private inference with trusted hardware. Suppose that we now want to
deploy a trained model to the cloud, so that users can request predictions on their data. This again
requires users to sacrifice their privacy: the user’s input and the model’s output are shared with the
cloud provider. Users further have to trust the cloud provider with the integrity of the computation.
That is, a user cannot verify whether the obtained model output was computed correctly or not.

The literature on secure computation offers a solution to this problem [85, 91, 199, 279]. A user
and the cloud provider can engage in a cryptographic protocol that results in the user obtaining
the model output (along with a proof of correct computation), without the cloud provider learning
anything about the user’s input [87, 88, 126, 174]. Unfortunately, these cryptographic protocols
incur very high communication or computation costs, and are three to four orders-of-magnitude
slower than a non-private baseline.

Trusted Execution Environments (TEEs) offer a more pragmatic solution to our problem [111,
183]. TEEs use hardware and software protections to isolate sensitive code, while attesting to its cor-
rect execution. By evaluating a machine learning model in a TEE, the cloud provider can guarantee
privacy and integrity to its remote clients. Existing TEE solutions outperform pure cryptographic
approaches by multiple orders of magnitude, but still come at a steep price in performance com-
pared to a non-private baseline (due to the TEE’s computation overhead). This leads us to the main
question we address in Chapter 7:

CHAPTER 1. INTRODUCTION 9

How can we most efficiently leverage TEEs for secure machine learning?

We introduce a new approach to this problem, wherein a neural network execution is partially out-
sourced from a TEE to a co-located, untrusted but faster device. The main observation that guides our
approach is that matrix multiplication—the computational bottleneck in modern neural networks—
admits a concretely efficient verifiable outsourcing scheme known as Freivalds’ algorithm [82], which
can also be turned private in our setting. Our TEE selectively outsources computationally intensive
steps to a fast untrusted co-processor (e.g., a GPU), thereby achieving much better performance
than running the entire computation in the TEE—without compromising security.

We instantiate this approach in Slalom, a system for efficient neural network inference in any
trusted execution environment. We implement a Slalom prototype using Intel SGX [164], and eval-
uate our system on canonical neural networks with a variety of computational costs. Compared to
running all computations in the TEE, Slalom increases throughput (as well as energy efficiency) by
6× to 20× for verifiable inference, and by 4× to 11× for verifiable and private inference.

Taken together, the results in the second part of this dissertation demonstrate that it is possible
to achieve strong privacy guarantees for machine learning, along with much lower performance
overheads than in prior work.

1.2 Machine Learning Background

Most of this dissertation focuses on standard classification tasks, for a distribution D over examples
x ∈ Rd and labels y ∈ [C]. A classifier is a function fθ : Rd → [C]. This function is parametrized by
parameters (or weights) θ ∈ Rp, which we usually ignore for notational convenience.

The performance of a classifier f on a labeled input (x, y) is measured by means of a loss function
L(x, y; f), for example the “0/1” loss or misclassification loss:

L0/1(x, y; f) := 1{f(x) 6=y} =

1 if f(x) 6= y

0 otherwise .
(1.1)

We will drop the dependency on the classifier f when it is clear from context and write L(x, y).
The risk of a classifier, R(f) is the expected 0/1 loss over the distribution D:

R(f) := E
(x,y)∼D

[
L0/1(x, y; f)

]
= Pr

(x,y)∼D
[f(x) 6= y] . (1.2)

Given a dataset D = {(x(1), y(1)), . . . , (x(n), y(n))} sampled i.i.d. from the distribution D, and a

CHAPTER 1. INTRODUCTION 10

loss function L, we define the empirical risk R̂(f) as:

R̂(f) := 1
n

n∑
i=1

L(x(i), y(i); f) . (1.3)

A classifier f can be trained with Empirical Risk Minimization (ERM), which consists in finding
parameters θ∗ for f that minimize the empirical risk R̂(f). For this purpose, the loss function L is
typically chosen as a differentiable approximation to the 0/1 loss, e.g., the cross-entropy loss.

Neural networks. Most of the classifiers f(x) that we consider are neural networks. A neural
network is a function F : Rd → RC that takes an input x ∈ Rd and produces an output vector
in RC . The network’s output vector corresponds to confidence scores for individual classes. The
classifier f : Rd → [C] is defined as f(x) = arg maxi∈[C] F (x)i.

A neural network F consists of multiple layers:

F (x) := Fn ◦ Fn−1 ◦ · · · ◦ F1(x) .

For a standard feed-forward network, each of the n individual layers is of the form

Fi(x) := σ(wi · x+ bi) ,

where wi · x + bi is some linear operation of the layer’s input x (e.g., a convolution) parameterized
by weights wi and biases bi, and σ is an activation function (e.g., the ReLU function [178]). The
collections of weights {wi}ni=1 and biases {bi}ni=1 make up the network’s parameters θ.

Image classification. While many of the techniques in this dissertation are agnostic to the par-
ticular application area for neural networks, we usually illustrate our results on classical tasks from
computer vision, in particular image classification.

In an image classification task, the model’s input is an image of dimension h×w×c. The channel
dimension c is equal to 1 for grayscale images, to 3 for RGB images, and to 4 for RGBA images
with an extra alpha channel. The inputs are normalized so that each pixel lies in the range [0, 1].
An input x thus lies in the range x ∈ [0, 1]h·w·c. The classifier’s output range [C] corresponds to a
set of predefined object labels (e.g., 1→ “horse”, 2→ “car”, etc.)

CHAPTER 1. INTRODUCTION 11

Bibliographic Notes

The material in this dissertation is based on the following peer-reviewed works:

Chapter 3: “Ad-versarial: Perceptual Ad-Blocking meets Adversarial Machine Learning”, with
Pascal Dupré, Gili Rusak, Giancarlo Pellegrino and Dan Boneh, published in the Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019 [256].

Chapter 4: “Adversarial Training and Robustness for Multiple Perturbations”, with Dan Boneh,
published in Advances in Neural Information Processing Systems (NeurIPS), 2019 [250].

Chapter 5: “Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturba-
tions”, with Jens Behrmann, Nicholas Carlini, Nicolas Papernot and Jörn-Henrik Jacobsen, pub-
lished in the Proceedings of the International Conference on Machine Learning (ICML), 2020 [257].

Chapter 6: “Differentially Private Learning Needs Better Features (or Much More Data)”, with
Dan Boneh, published in the Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2021 [252].

Chapter 7: “Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hard-
ware”, with Dan Boneh, published in the Proceedings of the International Conference on Learning
Representations (ICLR), 2019 [251].

Additional Resources

For each of the above works, we further release open-source code and data to reproduce our results:

Chapter 3: https://github.com/ftramer/ad-versarial.

Chapter 4: https://github.com/ftramer/MultiRobustness.

Chapter 5: https://github.com/ftramer/Excessive-Invariance.

Chapter 6: https://github.com/ftramer/Handcrafted-DP.

Chapter 7: https://github.com/ftramer/slalom.

https://github.com/ftramer/ad-versarial
https://github.com/ftramer/MultiRobustness
https://github.com/ftramer/Excessive-Invariance
https://github.com/ftramer/Handcrafted-DP
https://github.com/ftramer/slalom

CHAPTER 1. INTRODUCTION 12

Notation

We use the following notation throughout this dissertation.

Sets, Algebra and Logic. For a set S, the notation x←$S indicates that the element x is sampled
uniformly at random from S. For an integer n > 0, we use the notation [C] = {1, . . . , n}. When
defining a variable X, we use the notation X := expression. We denote the reals by R, and a finite
field by F. Given a predicate P , we use the notation 1{P} for an indicator function that equals 1 if
the predicate P is true, and 0 otherwise.

Probability. We denote distributions using calligraphic letters, e.g., D,P,Q. We use x ∼ D to denote
sampling an element x from the distribution D. For a random variable X and event O, we denote
the probability of the event as Pr[X = O], the expectation of X as E[X] and its variance as Var[X].
We denote the normal distribution with mean µ and standard deviation σ as N (µ, σ2).

Vectors. We denote real-valued vectors as x = (x1, . . . , xn). An indexed of vectors is denoted as
{x(1), . . . , x(n)}. We will use multiple vector norms throughout this dissertation. The `∞ norm is
defined as ‖x‖∞ := max1≤i≤n |xi|. The `2 norm is given by ‖x‖2 :=

(∑n
i=1(xi)2)1/2. The `1 norm

is defined as ‖x‖1 :=
∑n
i=1 |xi|. The `0 “norm” (which is not a norm) is the number of non-zero

elements of x, i.e., ‖x‖0 :=
∑n
i=1(xi)0 (where we use the convention that 00 = 0). We sometimes

use the notation |x| for the number of elements in a vector, i.e, |x| = n in the examples above.

Machine learning. We consider standard supervised classification tasks for a distribution D over
examples x ∈ Rd and labels y ∈ [C]. A classifier is a function f : Rd → [C]. We denote a dataset
sampled from the distribution D asD = {(x(1), y(1)), . . . , (x(n), y(n))}. We use the notation L(x, y; f)
(or L(x, y) when f is clear from context) to denote a loss function applied to the classifier’s output
and the input’s true label.

Adversarial perturbations. For an input x, we denote an adversarial version of the input as x̂ := x+δ,
where δ is an additive perturbation. Given a loss function L(x+ δ, y; f) over a perturbed input, we
denote the gradient of L with respect to the perturbation δ as ∇δL(x+ δ, y; f).

Algorithms. We use the notation x← v to indicate assignment of value v to a variable x.

Part I

The Security Threat of
Adversarial Examples

13

14

In the first part of this dissertation, we study the threat posed by adversarial examples to the
security of machine learning systems. In Chapter 2, we formalize the threat model of adversarial
examples—which is often left implicit in the literature—and argue that this threat model is unre-
alistically restrictive for many security-sensitive applications of machine learning. In Chapter 3, we
demonstrate a compelling security-relevant application of adversarial examples for evading content
moderation systems on the Web. In particular, we show that recent proposals to use machine learn-
ing for ad-blocking fail to account for these models’ critical lack of robustness to attacks. We then
introduce and analyze two intrinsic limitations of current defenses against adversarial examples,
which limit the usefulness of these defenses in practice. In Chapter 4, we show that the performance
of current defenses degrades rapidly as we aim for robustness against rich sets of input perturbations.
In Chapter 5, we argue that aiming for robustness to well-defined formal sets of perturbations is in-
herently insufficient, and possibly even harmful. Our main takeaway is that robustness to adversarial
examples remains by-and-large an unsolved problem in machine learning today.

Chapter 2

The Threat Model of Adversarial
Examples

In this chapter, we introduce a formal security model for adversarial examples, a class of evasion
attacks [17] on machine learning models where an adversary tampers with a model’s input to cause
the model to fail.

Following a long line of prior work [17, 26, 95, 100, 144, 154, 191, 192, 194, 246], we define an
adversarial example for an input x of a classifier f as a perturbed input x̂ that is perceptually close
to x, and that is misclassified by f :

Definition 2.1 (Adversarial Example). Given a classifier f , an input (x, y) ∼ D, and a set S of
perceptually small perturbations, an adversarial example for x is an input

x̂ := x+ δ, such that f(x̂) 6= y and δ ∈ S .

Under this definition, the problem of designing robust machine learning models can be cast as
the minimization of a classifier’s adversarial risk:

Definition 2.2 (Adversarial Risk). Given a classifier f , a distribution D, and a set S of perceptually
small perturbations, the adversarial risk Radv(f ;S) is given by:

Radv(f ;S) := Pr
(x,y)∼D

[
max
δ∈S

1{f(x+δ) 6=y}

]
.

This formulation is compelling from an optimization perspective [159], and prior work has ex-
ploited this to build practical defense techniques that successfully minimize the adversarial risk,
both empirically and provably [53, 83, 146, 159, 207, 271].

15

CHAPTER 2. THE THREAT MODEL OF ADVERSARIAL EXAMPLES 16

Adversary A(D, S) Challenger C(D, S)

Dtrain ← D∗

f ← train(Dtrain, S)

f

x, y ← D

x, y

δ ← Attack(f, x, y, S)
x̂← x+ δ

x̂

ŷ ← f(x̂)

Attacker wins if ŷ 6= y and δ ∈ S

Figure 2.1: The “expectimax” security game for adversarial examples. The adversary and
challenger know the data distribution D and the set of perturbations S that a model should be
robust to. The challenger first trains a model f and shares this model with the adversary. For a
test example (x, y) sampled from the distribution D, the attacker wins if they find a perturbation
δ ∈ S such that the perturbed adversarial example x̂ is misclassified.

2.1 The Expectimax Game

From a security perspective, the above formulation of adversarial examples and of the adversarial risk
leaves implicit a number of important details relating to the actual threat model that adversarial
examples capture. Instead, we find it helpful to define an analogous security game, between an
adversary A and a challenger (or defender) C, in Figure 2.1.

This game has previously been referred to as the “expectimax” game [93] (because the adversary’s
success is given by the expectation, over some distribution, of the model’s performance on a worst-
case perturbation). The adversary’s success in the expectimax game is precisely upper-bounded by
the adversarial risk Radv(f ;S). This upper-bound is tight if the adversary’s attack strategy Attack

always finds the worst-case adversarial perturbation within the set S.
What threat model does the expectimax game in Figure 2.1 capture? The challenger’s goal is

to (robustly) classify inputs from the distribution D on average. The adversary, in turn, has to
attack specific examples sampled from this distribution, using perturbations from a pre-defined set.
Crucially, the adversary does not get to choose the distribution over inputs, or modify it in any way,
beyond perturbing inputs within the pre-defined set S.

This threat model is quite restrictive! For example, it does not allow the adversary to replay
misclassified examples (a so-called “test set attack” [89]), or to pick arbitrary out-of-distribution

CHAPTER 2. THE THREAT MODEL OF ADVERSARIAL EXAMPLES 17

examples. The threat model further implies that it is not enough for the adversary to win only once
(or occasionally): a strong adversary should succeed with high probability over the distribution D.

Is the expectimax game realistic? We argue that in many practical settings considered in prior
work, adversarial examples are not a necessary attack vector, as the above restrictions do not all
apply. A similar argument was previously expressed by Gilmer et al. [89]. Consider the following
examples:

1. Fooling self-driving systems. Self-driving is often used as a motivating scenario for the safety
implications of adversarial examples. Indeed, small perturbations to street signs or markings
can fool self-driving models and possibly cause crashes [73, 74, 191].

Yet, adversarial examples poorly capture the threat model that self-driving systems operate
in. First, average-case success over a fixed distribution of inputs D and perturbation set S is a
poor metric when human lives are at stake. We should expect a safe model to handle out-of-
distribution anomalies, even if these are not “perceptually close” to an in-distribution sample
(e.g., a STOP sign could have been broken due to bad weather [185]). Second, a motivated
malicious party has no reason to limit themselves to perceptually small attacks. An attacker
could paint over a street sign, or hold a (real) STOP sign outside of their car window on the
highway. In both cases, we should expect a self-driving system to still operate reliably.

2. Inaudible audio commands. Adversarial examples for audio recognition systems have also
received a lot of attention [28, 29, 50]. Here, the goal of an attacker is to minimally distort
a given audio sample so as to fool the recognition system into hearing audio of the attacker’s
choosing (a targeted attack). Such an attack can cause a voice assistant to hear commands that
are inconspicuous to the owner (and e.g., cause the assistant to issue an unwanted purchase).

The expectimax threat model fails to capture many relevant attack vectors in this setting.
For example, a single command that fools the voice assistant could be replayed many times.
Another concerning threat is that a perfectly audible command could trigger a voice assistant
without the owner’s awareness (e.g., some TV ads mistakenly trigger Alexa devices, and this
may happen when the owner is in a different room). This example illustrates that for voice as-
sistants, the problem of command authenticity is as much of a concern as reliable transcription.
The threat model of adversarial examples only considers the latter.

3. Evading facial recognition. Adversarial examples have also been proposed as a means to evade
facial recognition systems, e.g., by means of small perturbations printed on glasses [228].

Whether “small” perturbations are needed in this scenario is debatable. One could evade a
facial recognition system by wearing a face mask (a “perturbation” that is clearly perceptible).
But such a subterfuge might be easily detected by a human observer. Yet, researchers have

CHAPTER 2. THE THREAT MODEL OF ADVERSARIAL EXAMPLES 18

also shown how to successfully bypass facial recognition systems in airports (where human
operators are present) using prosthetic masks—which are also “large” perturbations [223].

The above examples show that the threat model of (minimally perturbed, in distribution) adver-
sarial examples is poorly aligned with the true threat model in which many machine learning models
operate. Note that this does not mean that the above models are therefore easier to defend against
attack. Quite the opposite in fact: these applications face threats far broader than imperceptible
perturbations. As a result, Gilmer et al. [89] have argued that the expectimax threat model in
Figure 2.1 is not relevant in any practical security-sensitive application.

2.2 Adversarial Examples As a Necessary Attack Vector

In Chapter 3, we describe a security-sensitive application where adversarial examples are necessary
for a successful attack: online ad-blocking.

In this setting, the challenger is an ad-block provider that builds a model that users run in their
browsers to detect and block online ads in real time. The adversary (a website publisher or an ad
network) aims to show ads to end users by bypassing automated blocking. The threat model faced
by online ad-blockers perfectly aligns with the expectimax threat model:

• There is a natural distribution over inputs that the adversary cannot arbitrarily control. In-
deed, ads are designed by marketing teams to promote specific products and maximize user
engagement. Even if a specific ad bypasses detection, an ad network cannot simply replay that
ad indefinitely.

• Perturbations applied to ads (or other web content) should be imperceptible. The goal of the
adversary to show the original ads to users so that users interact with them.

• Average-case error is a reasonable performance metric. Any individual failure on the side of
the challenger (i.e., the ad-blocker missing an ad, or incorrectly blocking non-ad content) has
a small utility cost. An ad-blocker that blocks 99% of ads would likely be acceptable for most
users. In turn, any successful attack from an ad-network or website publisher yields a fixed
monetary gain (the expected gain from an ad impression).

The above threat model is not unique to ad-blocking. It applies broadly to the problem of online
content blocking or moderation. Other prominent examples include the detection of inappropri-
ate content on social media platforms (where the adversary aims to publish some piece of media
with minimal changes so as to bypass detection), or the detection of phishing websites (where the
adversary creates a website that visually mimics some authoritative website to trick users).

In Chapter 3, we focus on adversarial examples in ad-blocking for two compelling reasons:

CHAPTER 2. THE THREAT MODEL OF ADVERSARIAL EXAMPLES 19

1. Recent progress in computer vision has motivated the design of perceptual ad-blockers, that
use computer vision techniques to mimic the way in which end users detect ads using visual
cues [243, 244, 261, 272]. Perceptual ad-blocking holds the promise of being more robust than
classical approaches to ad-blocking based on ad metadata, but its robustness had not been
previously evaluated.

2. Ad-blockers operate client-side, and are thus typically accessible to the adversary as a white
box. This makes it considerably easier for an adversary to craft adversarial examples.

We show that perceptual ad-bockers are easily bypassed by exploiting adversarial examples in the
underlying computer vision system. Using standard attack techniques, the ad-blocker’s adversaries
can craft imperceptible perturbations for ads or other website content that cause the ad-blocker to
miss ads. Specifically, the adversary finds perturbations δ from within some imperceptible set S that
can be applied to various web elements and that cause the ad-blocker to misclassify the perturbed
content. Our attacks apply broadly to different computer vision techniques for ad-blocking, from
classical template matching algorithms that detect ad identifiers in individual HTML images [244],
to end-to-end neural networks that operate over rendered web content [184, 261].

The fate of perceptual ad-blockers thus appears intimately tied to our ability to design robust
visual classifiers, under the expectimax threat model. As we show in Chapter 4 and Chapter 5, there
remain fundamental and substantial obstacles towards this goal. These obstacles are intimately tied
to the problem of choosing an appropriate perturbation set S in the expectimax game.

2.3 Choosing a Perturbation Set

There is one crucial detail that the game in Figure 2.1 leaves ill-defined: how do we characterize the
set S of “small” perturbations? For any input x and perturbation δ, we could of course ask a cohort
of human whether x+δ is perceptually similar to x. Yet, efficiently finding worst-case perturbations
from this implicitly defined set seems intractable.

Prior work has sidestepped this issue by choosing a simple “proxy” set S′ ⊂ S, such that S′ can
be efficiently optimized over [95]. Robustness to perturbations from S′ is a necessary condition for
robustness to the entire set S. A popular choice has been to set S′ as some small `p ball, i.e., all
perturbations δ such that ‖δ‖p is below some threshold ε [95, 144, 159, 255].

Focusing on a proxy set S′ is sufficient when designing attacks. Indeed, if the adversary A
succeeds in finding an adversarial perturbation δ ∈ S′, then we have δ ∈ S as well. An analogous
argument does not hold for defenses, and this is the main reason why defending against adversarial
examples is so much harder than attacking. Indeed, if a model is robust against perturbations from
S′, this does not imply that it is robust against all perturbations in S. In fact, prior work has
shown that given two different simple proxy sets (e.g., perturbations of small `∞ and small `1 norms

CHAPTER 2. THE THREAT MODEL OF ADVERSARIAL EXAMPLES 20

respectively), defenses that are tailored to be robust against perturbations from one of the two sets
attain no robustness to perturbations from the other [71, 230].

In Chapter 4, we ask whether it is possible to build robust defenses by approximating S in a
“bottom-up” fashion. That is, given multiple proxy sets S′i ⊂ S, can we train models that are
robust against perturbations from the union of these proxy sets, ∪iS′i ⊂ S. We first prove that
aiming for robustness against multiple perturbation types can lead to a robustness tradeoff, where
increasing robustness to one type of perturbation necessarily decreases robustness to another. We call
such perturbation types mutually exclusive. We then demonstrate empirically that this robustness
tradeoff does manifest itself when training robust vision models against a union of just two or three
proxy perturbation types. Thus, this explicit approach of building up robustness to perturbations
from increasingly larger subsets of S does not appear promising.

In Chapter 5, we further ask whether the implicit assumption that S′ ⊂ S always holds, i.e.,
whether the perturbations in the proxy set are truly perceptually small. We find that for some
canonical vision benchmarks, the proxy sets considered in the literature are too large, and include
perturbations that can change an image’s class according to human labelers. Defenses that aim for
robustness against these proxy sets thus harm a model’s (true) robustness, by making the model
invariant to real semantics of the classification task [120]. This situation may seem relatively benign.
Yet, we prove that there is a fundamental tradeoff at play here. Informally, unless the “geometry”
of the proxy set S′ is perfectly aligned with that of the set S, the proxy set S′ must either be too
small (and thus the defense remains overly sensitive to small perturbations) or too large (in which
case the defense is overly invariant to task-relevant features). Unfortunately, we show that finding
a proxy set S′ with the right “geometry” is as hard as perfectly solving the classification task.

We are thus left with a “chicken-and-egg” problem. If we cannot approximate the set S of
perceptually small perturbations, then it seems hard to (explicitly) build models that are robust
to perturbations in S. In turn, explicitly approximating S would defeat the purpose of machine
learning, which is to learn a model of perceptual similarity from data, instead of having to formally
characterize it. Our main hope then is that a machine learning model would implicitly learn the right
notion of perceptual similarity—when given sufficiently rich training data. While this endeavor has
been unsuccessful so far, OpenAI’s recent work on internet-scale multimodal learning (CLIP) [206]
showed promising improvements for weaker forms of model robustness (for average-case, rather than
worst-case perturbations).

Chapter 3

A Security Application: Evading
Perceptual Ad-blockers

As we have argued in Chapter 2, adversarial examples are often “overkill” when analyzing the
security of deployed machine learning systems. Typically, there exist simpler and arguably more
natural attack vectors that threaten the system’s integrity. In this chapter, we thus ask:

Is there a security-sensitive task where adversarial examples are a necessary attack vector?

We provide evidence of a security application where imperceptible perturbations to in-distribution
examples are indeed necessary for a successful attack: online ad-blocking.

Online advertising is a contentious facet of the Web. Online ads generate over $200 billion in
value [265], but many Internet users perceive them as intrusive or malicious [138, 151, 205, 276].
The growing use of ad-blockers such as Adblock Plus1 and uBlock2 has sparked a fierce arms race
with publishers and advertising networks. Current ad-blockers maintain large crowdsourced lists
of ad metadata—such as page markup and URLs. In turn, publishers and ad networks (including
Facebook [167, 260] and 30% of the Alexa top-10K list [290]) continuously adapt and deploy small
changes to web page code in an effort to evade, or detect ad-blocking.

Towards visual ad-blocking. This arms race has prompted ad-blockers to search for more robust
signals within ads’ visual content, as altering these would affect user experience. One such signal
is the presence of ad-disclosures such as a “Sponsored” caption or the AdChoices logo [62]), which
many ad-networks add for transparency [62]. Storey et al. [244] proposed Ad-Highlighter [243], the
first perceptual ad-blocker that detects ad-disclosures by combining web-filtering rules and computer
vision techniques. Motivated by the alleged superior robustness of perceptual techniques [244],

1https://adblockplus.org. Accessed 2021-6-22.
2https://www.ublock.org. Accessed 2021-6-22.

21

https://adblockplus.org
https://www.ublock.org

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 22

popular ad-blockers now incorporate similar ideas. For example, Adblock Plus supports image-
matching filters [203], while uBlock crawls Facebook posts in search for “Sponsored” captions [260].

However, as proposed perceptual ad-blockers still partially use markup as a proxy for ads’ visual
content, they appear insufficient to end the ad-blocking arms race. For example, Facebook routinely
evades uBlock Origin using increasingly complex HTML obfuscation for the “Sponsored” captions
(see [260]). Ad-Highlighter’s computer vision pipeline is also vulnerable to markup tricks such as
image fragmentation or spriting (see Figure 3.13). Escaping the arms race over markup obfuscation
requires perceptual ad-blockers to move towards operating on rendered web content. This is exem-
plified in Adblock Plus’ Sentinel project [272], that uses deep learning to detect ads directly in web
page screenshots. On a similar note, Percival [261] is a recently proposed ad-blocker that adds a
deep learning ad-classifier into the rendering pipeline of the Chromium and Brave browsers. While
these approaches might bring an end to the current markup-level arms race, our results show that
visual ad-blocking merely replaces this arms race with a new one, involving powerful attacks that
directly target the ad-blockers’ visual classifier.

Adversarial examples for ad-classifiers. The main threat to visual ad-blockers are adversarial
examples, which challenge the core assumption that ML can emulate humans’ visual ad-detection.
To our knowledge, our attacks are the first application of adversarial examples to a real-world web-
security problem.

We rigorously assess the threat of adversarial examples on seven visual ad-classifiers: Two
computer-vision algorithms (perceptual hashing and OCR) used in Ad-Highlighter [244]; the ad-
classification neural networks used by Percival [261] and [112]; a canonical feature matching model
based on the Scale-Invariant Feature Transform (SIFT) [156]; and two object detector networks
emulating Sentinel [272]. For each model, we create imperceptibly perturbed ads, ad-disclosure or
native content, that either evade the model’s detection or falsely trigger it (as a means of detecting
ad-blocking).

Among our contributions is a new evasion attack [114, 218] on SIFT [156] that is conceptually
simpler than prior work [110].

Attacking perceptual ad-blockers such as Sentinel [272] presents the most interesting challenges.
For these, the classifier’s input is a screenshot of a web page with contents controlled by different
entities (e.g, publishers and ad networks). Adversarial perturbations must thus be encoded into
HTML elements that the adversary controls, be robust to content changes from other parties, and
scale to thousands of pages and ads. We tackle the adversary’s uncertainty about other parties’
page contents by adapting techniques used for creating physical adversarial examples [7, 228]. We
also propose a novel application of universal adversarial examples [175] to create a single perturba-
tion that can be applied at scale to all combinations of websites and ads with near 100% success
probability.

We further show that adversarial examples enable new attacks, wherein malicious content from

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 23

Figure 3.1: Ad-blocker privilege hijacking. A malicious user, Jerry, posts adversarial content
to Facebook that fools a perceptual ad-blocker similar to Sentinel [272] into marking Tom’s benign
content as an ad (red box) and blocking it in every user’s browser.

one user can hijack the ad-blocker’s high privilege to incorrectly block another user’s content. An
example is shown in Figure 3.1. Here Jerry, the adversary, uploads a perturbed image to Facebook.
That image is placed next to Tom’s post, and confuses the ad-blocker into classifying Tom’s benign
post as an ad, and incorrectly blocking it. Hence, a malicious post by one user can cause another
user’s post to get blocked.

Moving beyond the Web and visual domain, we build imperceptible audio adversarial examples
for AdblockRadio3, a radio ad-blocker that uses ML to detect ads in raw audio streams.

Outlook. While visual ad-classification of rendered web content is both sufficient and necessary to
bring an end to the arms race around page markup obfuscation, we show that this merely replaces
one arms race with a new one centered on adversarial examples. Our attacks are not just a first step
in this new arms race, where ad-blockers can easily regain the upper hand. Instead, they describe an
inherent difficulty with the perceptual ad-blocking approach, as ad-blockers operate in essentially the
worst threat model for visual classifiers. Their adversaries prepare (offline) digital attacks to evade
or falsely trigger a known white-box visual classifier running inside the ad-blocker. In contrast, the
ad-blocker must resist these attacks while operating under strict real-time constraints.

Our study’s goal is not to downplay the merits of ad-blocking, nor discredit the perceptual
ad-blocking philosophy. Indeed, ML might one day achieve human-level perception. Instead, we
highlight and raise awareness of the inherent vulnerabilities that arise from instantiating perceptual

3https://www.adblockradio.com. Accessed 2021-6-22.

https://www.adblockradio.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 24

(a) (b) (c)

Figure 3.2: The AdChoices logo. AdChoices is a standard for disclosure of behavioral advertis-
ing [62]. Ads are marked by the icon (a), with optional text (b). Despite creative guidelines [63],
many variants of the logo are in use (c).

ad-blockers with existing ML techniques.

3.1 Preliminaries and Background

3.1.1 The Online Advertising Ecosystem

Online advertising comprises four actors: users, publishers, ad networks, and advertisers. Users
browse websites owned or curated by a publisher. Publishers assigns parts of the site’s layout to
advertisements. Control of these spaces is often outsourced to an ad network that populates them
with advertisers’ contents.

To protect users from deceptive ads, the Federal Trade Commission and similar non-US agen-
cies require ads to be clearly recognizable [69]. These provisions have also spawned industry self-
regulation, such as the AdChoices standard [62] (see Figure 3.2).

3.1.2 Perceptual Ad-blocking

Perceptual ad-blocking aims at identifying ads from their content, rather than from admetadata such
as URLs and markup. The insight of Storey et al. [244] is that many ads are explicitly marked—e.g.,
via a “Sponsored” link or the AdChoices logo—to comply with regulations on deceptive advertising.
They developed Ad-Highlighter [243], an ad-blocker that detects ad-disclosures using different per-
ceptual techniques: (i) textual searches for “Sponsored” tags, (ii) fuzzy image search and OCR to
detect the AdChoices logo, and (iii) “behavioral” detection of ad-disclosures by identifying links to
ad-policy pages. Ad-blockers that rely on perceptual signals are presumed to be less prone to an arms
race, as altering these signals would affect user experience or violate ad-disclosure regulations [244].

Perceptual ad-blocking has drawn the attention of major ad-blockers, that have integrated visual
signals into their pipelines. For example, uBlock blocks Facebook ads by detecting the “Sponsored”
caption. Adblock Plus has added support for image-matching rules, which are easily extended to
fuzzy image search [203].

The above perceptual ad-blocking approaches still rely on some markup data as a proxy for ads’
visual content. This has prompted an ongoing arms race between Facebook and uBlock (see [260])
where the former continuously obfuscates the HTML tags that render its “Sponsored” tag—a process

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 25

that is invisible to the user. This weakness is fundamental to perceptual approaches that rely on
signals with an indirect correspondence to ads’ rendered content. This insight led Adblock Plus to
announce the ambitious goal of detecting ads directly from rendered web pages—with no reliance
on markup—by leveraging advances in image classification. Their Sentinel [272] project uses an
object-detection neural network to locate ads in raw Facebook screenshots. The recently released
Percival project [261] targets a similar goal, by embedding a deep-learning based ad-blocker directly
into Chromium’s rendering engine.

Design and goals. Ad-blockers are client-side programs running in browsers at a high privilege
level. They can be implemented as browser extensions or integrated in the browser. We ignore DNS
ad-blockers (e.g., Pi-hole) as these cannot use perceptual signals.4

The goal of ad-blockers is to identify and hide ads, while guarding against website breakage
resulting from the removal of functional content. As opposed to network-level filters, perceptual
signals only apply to downloaded web content and are thus unsuitable for some secondary goals of ad-
blockers, such as bandwidth saving or blocking of user tracking and malvertising [138, 151, 205, 276].

Ad-blockers may strive to remove ads without being detected by the publisher. For example,
many websites try to detect ad-blockers [176] and take according action (e.g., by asking users to
disable ad-blockers). As perceptual ad-blockers do not interfere with web requests, they are un-
detectable by the web-server [244]. However, the publisher’s JavaScript code can try to detect
ad-blockers by observing changes in the DOM page when hiding ads.

Finally, perceptual ad-blockers have strict timing constraints, and should process a web page and
detect ads in close to real-time.

Algorithms for visual ad classification. The identification of ads or ad-disclosures can be
achieved using a variety of computer vision techniques. Below, we describe existing approaches.

• Template matching. Ad-Highlighter detects the AdChoices logo by comparing each image in a
page to a template using average hashing: for each image, a hash is produced by resizing the
image to a fixed size and setting the ith bit in the hash to 1 if the ith pixel is above the mean
pixel value. An image matches the template if their hashes have a small Hamming distance.

A more robust template matching algorithm is SIFT [156] (Scale Invariant Feature Transform),
which creates an image hash from detected “keypoints” (e.g., edges and corners).

• Optical Character Recognition. To detect the rendered text inside the AdChoices logo, Ad-
Highlighter uses the open-source Tesseract OCR system 5. Tesseract splits an image into

4While we focus on the desktop browser setting, perceptual ad-blocking might also prove useful in the mobile
domain. Current mobile ad-blockers are often part of a custom browser, or act as web proxies—an insufficient approach
for native apps that prevent proxying using certificate pinning. Instead, a perceptual ad-blocker (potentially with
root access) could detects ads directly from app screenshots

5https://github.com/tesseract-ocr/tesseract. Accessed 2021-6-22.

https://github.com/tesseract-ocr/tesseract

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 26

overlapping frames and transcribes this sequence using a neural network. Ad-Highlighter
matches images for which the OCR output has an edit-distance with “AdChoices” below 5.

• Image Classification. Albeit not in an ad-blocking context, Hussain et al. [112] have demon-
strated that neural networks could be trained to distinguish images of ads from non-ads (with-
out the presence of any explicit ad-disclosures). The Percival project trained a similar neural
network to classify image frames in real-time within Chromium’s rendering pipeline [261].

• Object Detection. Sentinel [272] detects ads in rendered web pages using an object detector
network based on YOLOv3 [213]. The network’s output encodes locations of ads in an image.
The YOLOv3 [213] model outputs bounding box coordinates and confidence scores for B =
10,647 object predictions, and retains those with confidence above a threshold τ = 0.5.

3.1.3 Threat Model and Adversaries

We adopt the terminology of adversarial ML [195], where the defenders are users of a classifier (the
ad-blocker) that its adversaries (e.g., ad networks or publishers) are trying to subvert.

Publishers, ad networks, and advertisers have financial incentives to evade or detect ad-blockers.
We assume that publishers and ad networks are rational attackers that abide by regulations on online
advertising, and also have incentives to avoid actively harming users or disrupting their browsing
experience. As shown in prior work [201, 276], this assumption fails to hold for advertisers, as some
have abused ad-networks for distributing malware. We assume that advertisers and content creators
(e.g., a Facebook user) may try to actively attack ad-block users or other parties.

As ad-blockers are client-side software, adversaries can download and inspect their code offline.
However, we assume that adversaries do not know a priori whether a user is running an ad-blocker.

Attacking ad-blockers. The primary adversarial goal of publishers, ad-networks and advertisers
is to evade the ad-blocker’s detection and display ads to users. These adversaries may modify the
structure and content of web pages or ads to fool the ad-detector.

Alternatively, the ad-blocker’s adversaries may try to detect its presence, to display warnings or
deny access to the user. A common strategy (used by 30% of publishers in the Alexa top-10k) adds
fake ad-content (honeypots) to a page and uses JavaScript to check if the ads were blocked [290].
This practice leads to an orthogonal arms race on ad-block detection [176, 177, 182].

Adversaries may also try to abuse ad-blockers’ behaviors to degrade their usability (e.g., by
intentionally causing site-breakage or slow performance). The viability of such attacks depends on
the adversary’s incentives to avoid disrupting ad-block users’ browsing experience (e.g., Facebook
adds honeypots to regular user posts to cause site-breakage for ad-block users [260]).

Finally, attackers with no ties to the online advertisement ecosystem may try to hijack an ad-
blocker’s high privilege-level in other users’ machines. Such attackers can act as advertisers or

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 27

https://www.example.com Ad	Disclosure

Data	Collection	and	Training (1)	Page	Segmentation (3)	Action

Classifier Classifier

Ad

(2)	Classification

Figure 3.3: The architecture of a perceptual ad-blocker. In the offline phase, an ad-classifier
is trained on web data. In the online phase, the ad-blocker segments visited pages (1), classifies
individual elements (2), and renders the user’s ad-free viewport (3).

content creators to upload malicious content that exploits an ad-blocker’s vulnerabilities. Figure 3.1
shows one example of such an attack, where a malicious Facebook user uploads content that tricks
the ad-blocker into hiding an honest user’s posts.

3.2 Designing Perceptual Ad-blockers

To analyze the security of perceptual ad-blockers, we first propose a unified architecture that incor-
porates and extends prior and concurrent work (e.g., Ad-Highlighter [244], visual filter-lists [203],
Sentinel [272], and the recent Percival patch for Chromium’s rendering engine). We explore different
ways in which ad-blockers can integrate perceptual signals, and identify a variety of computer vision
and ML techniques that can be used to visually identify ads.

To simplify exposition, we restrict our analysis to ad-blockers that only rely on perceptual signals.
In practice, these signals are likely to be combined with existing filter lists (as in uBlock [260] or
Adblock Plus [203]) but the details of such integrations are orthogonal to our work. We note that
an ad-blocker that combines perceptual signals with filter lists inherits the vulnerabilities of both,
so our security analysis applies to these hybrid approaches as well.

3.2.1 General Architecture

A perceptual ad-blocker is defined by a collection of offline and online steps, with the goal of creating,
maintaining and using a classifier to detect ads. Figure 3.3 shows our unified architecture for
perceptual ad-blockers. The ad-blocker’s core visual classifier can range from classical computer
vision as in Ad-Highlighter [243] to large ML models as in Sentinel [272].

The classifier may be trained using labeled web data, the type and amount of which varies by
classifier. Due to continuous changes in web markup, ad-blockers may need regular updates, which
can range from extending existing rules (e.g., for Ad-Highlighter [243, 244]) to re-training complex
ML models such as Sentinel [272].

When deployed by a user, the ad-blocker analyzes data from visited pages to detect and block

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 28

ads in real-time. Ad detection consists of three main steps. (1) The ad-blocker optionally segments
the web page into smaller chunks. (2) A classifier labels each chunk as ad or non-ad content.
(3) The ad-blocker acts on the underlying web page based on these predictions (e.g., to remove
HTML elements labeled as ads). For some ad-classifiers, the segmentation step may be skipped.
For example, Sentinel [272] uses an object-detection network that directly processes full web page
screenshots.

Ad-Highlighter’s use of behavioral signals (i.e., recognizing ad-disclosures by the presence of a
link to an ad-policy page) can be seen as a special type of classifier that may interact with segmented
web elements (e.g., by clicking and following a link).

3.2.2 Approaches to Ad Detection

When online, a perceptual ad-blocker’s first action is the “Page Segmentation” step that prepares
inputs for the classifier. Figure 3.4 illustrates different possible segmentations. A cross-origin iframe

(red box 3) displays an ad and an AdChoices icon (purple box 2). An additional textual ad-disclosure
is added by the publisher outside the iframe (purple box 1). Publishers may use iframes to display
native content such as videos (e.g., red box 4).

We distinguish three main perceptual ad-blocking designs that vary in the granularity of their
segmentation step, and in turn in the choice of classifier and actions taken to block ads.

• Element-based perceptual ad-blockers, such as Ad-Highlighter, search a page’s DOM tree for
HTML elements that identify ads, e.g., the AdChoices logo or other ad-disclosures.

• Page-based perceptual ad-blockers, e.g., Sentinel [272], ignore the DOM and classify images of
rendered web pages.

• Frame-based perceptual ad-blockers, e.g., Percival [261], classify rendered content but pre-
segment pages into smaller frames.

Element-based perceptual ad-blocking. These ad-blockers segment pages into HTML ele-
ments that are likely to contain ad-disclosures. The segmentation can be coarse (e.g., Ad-Highlighter
extracts all img tags from a page) or use custom filters as in Adblock Plus’ image search [203] or
Ublock’s Facebook filters [260].

For textual ad-disclosures (e.g., Facebook’s “Sponsored” tag) the classification step involves triv-
ial string matching. Facebook is thus deploying HTML obfuscation that targets an ad-blocker’s
ability to find these tags [260]. This ongoing arms race calls for the use of visual (markup-less)
detection techniques. Ad-disclosure logos (e.g., the AdChoices icon) can be visually classified using
template matching. Yet, due to many small variations in ad-disclosures in use, exact matching (as
in Adblock Plus [203]) is likely insufficient [244]. Instead, Ad-Highlighter uses perceptual hashing

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 29

to match all img elements against the AdChoices logo. Ad-Highlighter also uses supervised ML—
namely Optical Character Recognition (OCR)—to detect the “AdChoices” text [243]. Once an
ad-disclosure is identified, the associated ad is found using custom rules (e.g., when Ad-Highlighter
finds an AdChoices logo, it blocks the parent iframe).

Storey et al. [244] further suggest to detect ads through behavioral signals that capture the ways
in which users can interact with them, e.g., the presence of a link to an ad-policy page.

Frame-based perceptual ad-blocking. The above element-based approaches require mapping
elements in the DOM to rendered content (to ensure that elements are visible, and to map detected
ad-identifiers to ads). As we show in Section 3.6.2, this step is non-trivial and exploitable if ad-
blockers do not closely emulate the browser’s DOM rendering, a complex process that varies across
browsers. For instance, image fragmentation or spriting (see Figure 3.13) are simple obfuscation
techniques that fool Ad-Highlighter, and would engender another cat and mouse game. To avoid
this, ad-blockers can directly operate on rendered images of a page, which many browsers (e.g.,
Chrome and Firefox) make available to extensions. Instead of operating on an entire rendered web
page (see page-based ad-blockers below), DOM features can still be used to segment a page into
regions likely to contain ads. For example, segmenting a page into screenshots of each iframe

is a good starting point for detecting ads from external ad networks. The approach of Percival
is also frame-based but directly relies on image frames produced during the browser’s rendering
process [261].

We consider two ways to classify frames. The first searches for ad-disclosures in rendered ads.
Template-matching is insufficient due to the variability of backgrounds that ad-disclosures are over-
laid on. Instead, we view this as an object-detection problem and address it with supervised ML.
The second approach is to train a visual classifier to directly detect ad content. Hussain et al. [112]
report promising results for this task. Percival also relies on a lightweight deep learning model to
classify frames as ad content [261].

Page-based perceptual ad-blocking. The core idea of perceptual ad-blocking is to emulate the
way humans detect ads. Element- and frame-based approaches embrace this goal to some extent,
but still rely on DOM information that humans are oblivious to. Recently, Adblock Plus proposed
an approach that fully emulates visual detection of online ads from rendered web content alone [272].

In a page-based ad-blocker, segmentation is integrated into the classifier. Its core task is best
viewed as an object-detection problem: given a web page screenshot, identify the location and di-
mension of ads. Adblock Plus trained the YOLOv3 object-detector [213] on screenshots of Facebook
with ads labeled using standard filter-lists.

Once ad locations are predicted, the ad-blocker can overlay them to hide ads, or remove the
underlying HTML elements (e.g., by using the document.elementFromPoint browser API to get
the HTML element rendered at some coordinate).

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 30

Figure 3.4: Perceptual ad-blocking elements. An ad (box #1) is displayed in an iframe, that
contains an AdChoices icon (box #2). A custom ad-disclosure from the publisher is outside the
iframe (box #3). Publishers can use iframes to display non-ad content such as videos (box #4).

3.3 Training a Page-based Ad-blocker

As the trained neural network of Sentinel [272] is not available for an evaluation, we trained one for
the analysis of Section 3.4. We used the same architecture as Sentinel, i.e., YOLO (v3) [212, 213, 214].

3.3.1 Data Collection

YOLO is an object detection network. Given an image, it returns a set of bounding boxes for each
detected object. To train and evaluate YOLO, we created a dataset of labeled web page screenshots
where each label encodes coordinates and dimensions of an ad on the page. We created the dataset
with an ad-hoc automated system that operates in two steps. First, given a URL, it retrieves the
web page and identifies the position of ads in the page using filter lists of traditional ad-blockers.
Then, our system generates a web page template where ads are replaced with placeholder boxes.
The concept of web page templates is convenient as it enables us to create multiple screenshots from
the same web page with different ads, a form of data-augmentation. Second, from each web page
template, we derive a number of images by placing ads on the template.

Web pages. We acquired web pages by retrieving the URLs of the top 30 news websites of each
of the G20 nations listed in allyoucanread.com. For each news site, we searched for the RSS feed

allyoucanread.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 31

URLs and discarded sites with no RSS feeds. The total number of RSS feed URLs is 143. We visited
each RSS feed URL daily and fetched the URLs to the daily news.

Template generation. Given a URL of a news article, we generate a page template using a
modified HTTP proxy that matches incoming HTTP requests against traditional ad-blocker filter
lists, i.e., Easylist6 and Ghostery7. The proxy replaces ad contents with monochrome boxes using a
unique color for each ad. These boxes are placeholders that we use to insert new ads. We manually
inspected all templates generated during this step to remove pages with a broken layout (caused by
filter lists’ false positives) or pages whose ads are still visible (caused by filter lists’ false negatives).

Image generation. From each page template, we generate multiple images by replacing place-
holder boxes with ads. We select ads from the dataset of Hussain et al. [112]. This dataset contains
about 64K images of ads of variable sizes and ratios. We complemented the dataset with 136 ads
we retrieved online. To insert pictures inside a template, we follow four strategies:

1. We directly replace the placeholder with an ad;

2. We replace the placeholder with an ad, and we also include an AdChoices logo in the top right
corner of the ad;

3. We augment templates without placeholders by adding a large ad popup in the page. The
page is darkened to highlight the ad;

4. We insert ads as background of the website, that fully cover the left- and right-hand margins
of the page.

When inserting an ad, we select an image with a similar aspect ratio. When we cannot find an exact
match, we resize the image using Seam Carving [8], a content-aware image resizing algorithm that
minimizes image distortion. To avoid overfitting during training, we limited the number of times
each ad image can be used to 20.

3.3.2 Evaluation and Results

Datasets. The training set contains 2,901 images, of which 2,600 have ads. 1,600 images with
ads were obtained with placeholder replacement, 800 with placeholder replacements with AdChoices
logos, 100 with background ads, and 100 with interstitials.

The evaluation set contains 2,684 images—2,585 with ads and 99 without ads. These are 1,595
images with placeholder replacement, 790 images with placeholder replacement with AdChoices
logos, 100 images with background ads, and 100 images with interstitials. We also compiled a

6https://easylist.to. Accessed 2021-6-22.
7https://www.ghostery.com. Accessed 2021-6-22.

https://easylist.to
https://www.ghostery.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 32

Figure 3.5: Activation maps of our ad detection model. The most salient features appear to
be the surroundings of ads rather than their visual content.

second evaluation set from 10 domains not used for training (this set is different from the one used
to evaluate attacks in Section 3.4). For each domain, we took a screenshot of the front page and four
screenshots of different subpages, resulting in 50 screenshots overall with a total of 75 advertisements.
We trained using the default configuration of YOLOv3 [213], adapted for a unary classification task.

Accuracy and performance. We tested our model against both evaluation sets. The model
achieved the best results after 3,600 training iterations. In the first set, our model achieved a mean
average precision of 90.88%, an average intersect of union of 84.23% and an F1-score of 0.96. On the
second set, our model achieved a mean average precision of 87.28%, an average intersect of union of
77.37% and an F1-score of 0.85. A video demonstrating our model detecting ads on five never seen
websites is available at https://github.com/ftramer/ad-versarial/blob/master/videos.

We evaluate performance of the model in TensorFlow 1.8.0 with Intel AVX support. On an Intel
Core i7-6700 CPU the prediction for a single image took 650ms.

Inspecting our model. We conduct a preliminary study of the inner-workings of our neural
network. By inspecting the model’s activation map on different inputs (see Figure 3.5), we find that
the model mainly focuses on the layout of ads in a page, rather than their visual content. This
shows that our ad-blocker detects ads using very different visual signals than humans. This raises
an intriguing question about the Sentinel model of Adblock Plus [272], which was trained solely on
Facebook data, where ads are visually close to the website’s native content. Thus, it seems less likely
that Sentinel would have learned to detect ads using layout information.

To generate the map in Figure 3.5, we compute the absolute value of the gradient of the network’s
output with respect to every input pixel, and apply a smoothing Gaussian kernel over the resulting
image. The gradient map is then overlaid on the original input.

https://github.com/ftramer/ad-versarial/blob/master/videos

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 33

Table 3.1: Attack strategies on perceptual ad-blockers. Strategies are grouped by the com-
ponent that they exploit—(D)ata collection, (S)egmentation, (C)lassification, (A)ction. For each
strategy, we specify which goals it can achieve, which adversaries can execute it, and which ad-
blockers it applies to (fully: or partially: G#).

Goals Actors Target

Strategy Ev
as
io
n

D
et
ec
tio

n
A
bu

se

Pu
bl
ish

er
A
d
N
et
wo

rk
A
dv

er
tis

er
C
on

te
nt

cr
ea
to
r

El
em

en
t-
ba

se
d

Fr
am

e-
ba

se
d

Pa
ge
-b
as
ed

D1: Data Training Poisoning

S1: DOM Obfuscation # # # G# #
S2: Resource Exhaustion (over-Segmentation) # # G# G# G# #

C1: Evasion with Adversarial Ad-Disclosures # # # # # # #
C2: Evasion with Adversarial Ads # # # # #
C3: Evasion with Adversarial Content # # # # # #
C4: Detection with Adversarial Honeypots # # # # #

A1: Cross-Boundary Blocking # # # # # #
A2: Cross-Origin Web Requests # # # # # #

3.4 Evaluating the Robustness of Perceptual Ad-blocking

Given the unified architecture from Section 3.2, we now perform a comprehensive security analysis of
the perceptual ad-blocking pipeline and describe multiple attacks targeting concrete instantiations of
each of the ad-blocker’s components. The primary focus of our analysis is to evaluate the robustness
of the ad-blocker’s core visual classifier, by instantiating adversarial examples for seven different
and varied approaches to ad-detection (Section 3.5). We further demonstrate powerful attacks
that exploit the ad-blocker’s high-privilege actions (Section 3.6.1). We conclude by describing more
classical attacks that affect the segmentation step of current perceptual ad-blockers (Section 3.6.2), as
well as potential attacks on an ad-blocker’s offline data collection and training phase (Section 3.6.3).

Our attacks can be mounted by different adversaries (e.g., publishers, ad-networks, or malicious
third parties) to evade or detect ad-blocking and, at times, abuse the ad-blocker’s high privilege level
to bypass web security boundaries. These attacks, summarized in Table 3.1, challenge the belief that
perceptual signals can tilt the arms race with publishers and ad-networks in favor of ad-blockers.

The attacks described in this section do not violate existing laws or regulations on deceptive
advertising, as the changes to the visual content of a page are imperceptible to human users.

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 34

Table 3.2: Evaluation of ad-classifiers. For each classifier, we first evaluate on “benign” data
collected from websites. We report false-positives (FP)—mis-classified non-ad content—and false
negatives (FN)—ad-content that the classifier missed. We then give the the attack model(s) consid-
ered when evading the classifier, the success rate, and the corresponding section.

Benign Eval. Adversarial Eval.

Category Method Targets FP FN Attack Model for Evasion Success

Element-
based

Blacklist AdChoices logos 0/824 33/41 N.A. -
Avg hash [244] AdChoices logos 3/824 3/41 Add ≤ 3 empty rows/cols 100%
SIFT textual AdChoices 2/824 0/17 `2 ≤ 1.5 100%
OCR [244] textual AdChoices 0/824 1/17 `2 ≤ 2.0 100%

Frame-based YOLOv3 AdChoices in iframe 0/20 5/29 `∞ ≤ 4/255 100%
ResNet [112] ad in iframe 0/20 21/39 `∞ ≤ 2/255 100%
Percival [261] large ads in iframe 2/7 3/33 `∞ ≤ 2/255 100%

Page-based YOLOv3 ads visible in
page screenshot

2 6/30 Publisher: universal full-page
mask (99% transparency)

100%

Publisher: adv. content below
ads on BBC.com, `∞ ≤ 3/255

100%

Ad network: universal mask for
ads on BBC.com, `∞ ≤ 4/255

95%

3.4.1 Evaluation Setup

Evaluated approaches. We analyze a variety of techniques to instantiate the different stages
of the perceptual ad-blocking pipeline. In particular, we evaluate seven distinct approaches to the
ad-blocker’s core visual ad-classification step (see Table 3.2). Three are element-based, three frame-
based, and one page-based. These seven classifiers are taken from or inspired by prior work. They
are: Two computer vision algorithms used in Ad-Highlighter [243, 244] (average hashing and OCR);
two ad classifiers, one from Hussain et al. [112] and one used in Percival [261]; a robust feature
matcher, SIFT [156]; and two object detector networks—with the same YOLOv3 model [213] as
Sentinel [184, 272]—which we trained to detect either ad-disclosures in frames, or ads in a full web
page.

For the two object detector models we built, we explicitly separated (i.e., assigned to non-
communicating authors) the tasks of (1) data-collection, design and training; and (2) development
of attacks, to ensure fair evaluation results. Our first (frame-based) model was trained to detect
AdChoices logos that we overlaid in a dataset of 6,320 ads collected by Hussain et al. [112]. We then
classify an iframe as an ad, if the model detects the AdChoices logo in it.

Our second model emulates the approach of the unreleased Sentinel [184, 272] and was trained
to detect ads in arbitrary news websites. This broadens Sentinel’s original scope (which was limited
to Facebook)—a decision we made due to difficulties in collecting sufficient training data [184]. The
process is described in Section 3.3. A video of our model in action on five websites not seen during
training is available at https://github.com/ftramer/ad-versarial/blob/master/videos.

BBC.com
BBC.com
https://github.com/ftramer/ad-versarial/blob/master/videos

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 35

Table 3.3: Evaluation data for adversarial examples. We collect images, frames and screenshots
from the Alexa top ten news websites that use the AdChoices standard (we exclude news.google.com
and shutterstock.com which contain no ads on their front-page). For each page, we extract all
images below 50 KB, all iframes, and take two screenshots (the front page and an article) of the
user’s viewport, and report the number of visible ads in these.

Images Iframes
Visible

Website Total AdChoices Total Ads AdChoices Ads
reddit.com 70 2 2 2 2 2
cnn.com 36 7 7 5 2 3
nytimes.com 89 4 3 3 3 2
theguardian.com 75 4 8 3 3 3
indiatimes.com 125 4 5 5 4 3
weather.com 144 5 11 7 3 3
news.yahoo.com 100 5 3 3 2 3
washingtonpost.com 40 1 5 2 1 3
foxnews.com 96 5 6 5 4 4
huffingtonpost.com 90 4 9 4 5† 4
Total 865 41 59 39 29 30
† One AdChoices logo appears in two rendered iframes laid on top of each other.

Evaluation data. We use real website data to evaluate the accuracy and robustness of the above
seven ad-classifiers. We built an evaluation set from the top ten news websites in the Alexa ranking
(see Table 3.3).

For each website, we extract the following data:

1. All images smaller than 50KB in the DOM. This data is used to evaluate element-based
techniques. We collect 864 images, 41 of which are AdChoices logos (17/41 logos contain the
“AdChoices” text in addition to the icon).

2. A screenshot of each iframe in the DOM tree, to evaluate frame-based models. We collect 59
frames. Of these, 39 are ads and 29 contain an AdChoices logo. Percival [261] only considers
images of dimension at least 100× 100 px so we limit it to these.8

3. Two screenshots per website (the front-page and an article) taken in Google Chrome on a
1920×1080 display.9 These are used to evaluate page-based models. Each screenshot contains
1 or 2 fully visible ads, with 30 ads in total.

8Taking a screenshot of an iframe is an approximation of how Chromium’s rendering engine segments frames for
Percival’s classifier. We verified that our attacks on Percival’s network work when deployed inside the Chromium
browser.

9We experimentally verified that our attacks on page-based ad-blockers are robust to changes in the user’s viewport.
An attacker could also explicitly incorporate multiple browsers and display sizes into its training set to create more
robust attacks. Alternatively, the adversary could first detect the type of browser and viewport (properties that are
easily and routinely accessed in JavaScript) and then deploy “responsive” attacks tailored to the user’s setting.

news.google.com
shutterstock.com
reddit.com
cnn.com
nytimes.com
theguardian.com
indiatimes.com
weather.com
news.yahoo.com
washingtonpost.com
foxnews.com
huffingtonpost.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 36

For template-matching approaches (perceptual hashing and SIFT) we use the same 12 AdChoices
templates as Ad-Highlighter [243].

When describing an ad-blocker’s page segmentation and the corresponding markup obfusca-
tion attacks in Section 3.6.2, we use some data collected on Facebook.com in November 2018. As
Facebook continuously and aggressively adapts the obfuscation techniques it uses to target ad-
blockers [260], the specific attacks we describe may have changed, which only goes to illustrate the
ongoing arms race and need for more robust markup-less ad-blocking techniques.

3.4.2 Accuracy and Performance of ML classifiers.

Table 3.2 reports the accuracy of the seven ad-classifiers on our evaluation data. For completeness,
we include a blacklist that marks any image that exactly matches one of the 12 AdChoices logos
used in Ad-Highlighter. As posited by Storey et al. [244], this approach is insufficient.

Note that the datasets described above are incomparable. Some ads are not in iframes, or have
no ad-disclosure, ans screenshots only contain images within the current view. Thus, the accuracy of
the classifiers is also incomparable. This does not matter, as our aim is not to find the best classifier,
but to show that all of them are insecure in the stringent attack model of visual ad-blockers.

Overall, element-based approaches have high accuracy but may suffer from some false-positives
(i.e., non-ad content classified as ads) that can lead to site-breakage. The frame-based approaches
are less accurate but have no false-positives. Finally, our Sentinel-like detector shows promising
(albeit imperfect) results that demonstrate the possibility of ad-detection on arbitrary websites.

We measure performance of each classifier on an Intel Core i7-6700 Skylake Quad-Core 3.40GHz.
While average hashing and SIFT process all images in a page in less than 4 seconds, OCR is much
slower (Ad-Highlighter disables it by default). Our OCR model parses an image in 100 ms, a 14
second delay on some websites. The frame-based classifiers process all iframes in 1-7 seconds. Our
page-based model processes pages downsized to 416 × 416px at 1.5 frames-per-second (on CPU),
which may suffice for ad-blocking. The authors of Percival recently demonstrated that an optimized
deployment of perceptual ad-blocking with a deep learning classifier incurs only minimal overhead
on page rendering (< 200 ms).

3.5 Attacking Ad Classifiers With Adversarial Examples

For perceptual ad-blockers that operate over images (whether on segmented elements as in Ad-
Highlighter [243], or rendered content as in Sentinel [272] or Percival [261]), security is contingent
on the robustness of the ad-blocker’s visual classifier. False negatives result in ads being shown, and
false positives cause non-ads to be blocked.

Both error types are exploitable using adversarial examples [95, 246]—small input perturbations
that fool a classifier. Adversarial examples can be used to generate web content that fools the

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 37

ad-blocker’s classifier, without affecting a user’s browsing experience.
In this section, we describe and evaluate four concrete types of attacks on the seven visual

classifiers we consider: (C1) adversarial ad-disclosures that evade detection; (C2) adversarial ads
that evade detection; (C3) adversarial non-ad content that alters the classifier’s output on nearby
ads; (C4) adversarial honeypots (misclassified non-ad elements, to detect ad-blocking). Our attacks
allow adversaries to evade or detect ad-blocking with (near)-100% probability.

3.5.1 Attack Model

We consider adversaries that perturb web content to produce false-negatives (to evade ad-blocking)
or false-positives (honeypots to detect ad-blocking). Each attack targets a single classifier—but is
easily extended to multiple models (see Section 3.7).

• False negative. To evade ad-blocking, publishers, ad networks or advertisers can perturb any
web content they control, but aim to make their attacks imperceptible. We consider pertur-
bations with small `2 or `∞ norm (for images with pixels normalized to [0, 1])—a sufficient
condition for imperceptibility. An exception to the above are our attacks on average hashing,
which is by design invariant to small `p changes but highly vulnerable to other imperceptible
variations. The attack model used for all evasion attacks are summarized in Table 3.2.

• False positive. The space of non-disruptive false positive attacks is vast. We focus on one easy-
to-deploy attack, that generates near-uniform rectangular blocks that blend into the page’s
background yet falsely trigger the ad-detector.

We assume the publisher controls the page’s HTML and CSS, but cannot access the content of
ad frames. This content, including the AdChoices logo, is added by the ad network.

Gilmer et al. [89] argue that the typical setting of adversarial examples, where the adversary is
restricted to finding imperceptible perturbations for given inputs, is often unrepresentative of actual
security threats. Interestingly, the threat model for visual ad classifiers does align perfectly with
this setting. The ad-blocker’s adversaries want to evade its classifier for a specific input (e.g., the
publisher’s current web page and an advertiser’s latest ad campaign), while ensuring that the users’
browsing experience is unaffected.

3.5.2 Overview of Attack Techniques and Results

For all seven ad-classifiers, we craft imperceptible adversarial perturbations for ad-disclosures, ads
and other web content, which can be used by publishers, ad-networks, or advertisers to evade or
detect ad-blocking.

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 38

Some of our classifiers can be attacked using existing techniques. For example, we show that
ad-networks and publishers can use standard gradient-based attacks [26, 144, 159] to create imper-
ceptibly perturbed ads or background content that fool our two frame-based classifiers with 100%
success rates (see Figure 3.7). We verify that similar attacks bypass the model used in Percival [261].

Attacking element-based classifiers is less straightforward, as they operate on small images (ad-
versarial examples are presumed to be a consequence of high dimensional data [90]), and some rely
on traditional computer vision algorithms (e.g., average hashing or SIFT) for which gradient-based
attacks do not apply. Nevertheless, we succeed in creating virtually invisible perturbations for the
AdChoices logo, or background honeypot elements, that fool these classifiers (see Figure 3.6). Our
attacks on Ad-Highlighter’s OCR network build upon prior work by Song and Shmatikov [238]. For
non-parametric algorithms such as SIFT, we propose a new generic attack using black-box optimiza-
tion [114, 218] (see Section 3.5), that is conceptually simpler than previous attacks [110].

Our most interesting attacks are those that target page-based ad-blockers such as Sentinel [272]
(see Figure 3.11, as well as Figure 3.10). Our attacks let publishers create perturbed web content to
evade or detect ad-blocking, and let ad-networks perturb ads that evade ad-blocking on the multitude
of websites that they are deployed in. These attacks overcome a series of novel constraints.

First, attacks on visual ML classifiers often assume that the adversary controls the full digital
image fed to the classifier. This is not the case for page-based ad-blockers, whose input is a screenshot
of a web document with content controlled by different actors (e.g., ad networks only control the
content of ad frames, while publishers can make arbitrary website changes but cannot alter ads
loaded in cross-origin iframes). Moreover, neither actor precisely knows what content the other
actors will provide. Adversarial examples for page-based ad-blockers thus need to be encoded into
the HTML elements that the adversary controls, and must be robust to variations in other page
content. We solve this constraint with techniques similar to those used to make physical-world
adversarial examples robust to random transformations [73, 143, 228]. We consider multiple tricks
to encode a publisher’s perturbations into valid HTML One attack uses CSS rules to overlay a near-
transparent perturbed mask over the full page (Figure 3.11 (b)). To detect ad-blocking, we craft an
innocuous page-footer that triggers the ad-blocker (Figure 3.11 (d)). Details on our attacks are in
Section 3.5.

A further challenge is the deployment of these attacks at scale, as creating perturbations for every
ad and website is intractable. This challenge is exactly addressed by attacks that create universal
adversarial examples [175]—single perturbations that are crafted so as to be effective when applied
to most classifier inputs. Universal perturbations were originally presented as a curious consequence
of the geometry of ML classifiers [175], and their usefulness for the scalability of attacks had not yet
been suggested.

Attacks on page-based ad-blockers have unique constraints, but also enable unique exploits.
Indeed, as a page-based classifier produces outputs based on a single full-page input, perturbing

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 39

content controlled by the attacker can also affect the classifier’s outputs on unperturbed page regions.
The effectiveness of such attacks depends on the classifier. For the YOLOv3 [213] architecture, we
show that publishers can perturb website content near ad iframes so as to fool the classifier into
missing the actual ads (see Figure 3.10).

3.5.3 Algorithms for Adversarial Examples

For some of the considered classifiers, adversarial examples for each of the attack strategies C1-C4
in Table 3.1 can be constructed using existing and well-known techniques (we primarily use the
Projected Gradient Descent attack of [159]). Below, we provide more details on the attack we use
to target SIFT, and on the techniques we use to create robust and scalable attacks for page-based
classifiers [272].

Black-box optimization attacks for non-parametric classifiers. SIFT is a non-parametric
algorithm (i.e., with no learned parameters). As such, the standard approach for generating adver-
sarial examples by maximizing the model’s training-loss function does not apply [246]. To remedy
this, we first formulate a near-continuous loss function LSIFT(x+δ, t) that acts as a proxy for SIFT’s
similarity measure between the perturbed image x + δ and some fixed template t. The next diffi-
culty is that this loss function is hard to differentiate automatically, so we use black-box optimization
techniques [114] to maximize LSIFT.

SIFT’s output is a variable-sized set of keypoints, where each keypoint is a vector v ∈ R132—
four positional values, and a 128-dimensional descriptor [156]. Let t be a template with keypoint
descriptors T . To match an image x against t, SIFT computes descriptor vectors for x, denoted
{v1, . . . , vm}. Then, for each vi it finds the distances di,1, di,2 to its two nearest neighbors in T .
The keypoint vi is a match if the ratio test di,1/di,2 < τ holds (where τ = 0.6). Let M(x, t) be the
keypoints of x that match with t. To evade detection, we reduce the size of M by maximizing the
following proxy loss:

LSIFT(x+ δ, t) :=
∑

vi∈Mτ (x,t)
di,1/di,2 . (3.1)

Maximizing L increases d·,1/d·,2 for matched keypoints until they fall below the ratio test. To create
false positives, we maximize an analogous loss that sums over vi /∈Mτ (x, t) and decreases the ratio.

Scalable attacks with partial input control. When attacking page-based classifiers, we need
to overcome two challenges: (1) the attacker only controls part of the page content and does not
know which content other actors will add; (2) the attacks should be deployable at scale for a variety
of web pages and ads. To create adversarial examples under these novel constraints, we combine
universal [175] and transformation-robust [74, 143, 228] attacks.

To create universal perturbations, we collect additional website screenshots: Dtrain is a set of 200
screenshots of news websites, and Deval contains the 20 screenshots collected in Section 3.4.1 (no

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 40

Original Avg. Hash OCR SIFT

False Positives:

Figure 3.6: Adversarial examples for element-based classifiers. These correspond to attacks
(C1) and (C4) in Table 3.1.

website or ad appears in both sets). We also collect Dtrain
BBC and Deval

BBC with 180 and 20 screenshots
from bbc.com/sports. The training sets are used to create perturbations that work for arbitrary
websites or ads. We measure attacks’ success rates on the evaluation sets.

We craft a perturbation δ by maximizing
∑
x∈Dtrain

∗
L(x � δ), where x � δ means applying the

perturbation δ to a page x (note that we omit an explicit label y in the loss here, as we are not
dealing with a standard classifier). Depending on the attack, the perturbation is added pixel-wise
to a page region that the adversary controls, or replaces that region with δ. All that remains is the
design of a suitable loss function L.

The YOLOv3 model we trained outputs multiple B = 10, 647 boxes for detected ads, and retains
a box b if its confidence—denoted conf(f(x), b)—is larger than a threshold τ . To cause ads to be
undetected, we thus maximize the following loss which causes all B boxes to have confidence below
τ − κ, for some slack κ > 0:

LFN
YOLO(x� δ) :=

∑
1≤b≤B

min ((τ − κ)− conf(f(x� δ), b), 0) , (3.2)

For false-positives, i.e., a fake object prediction, we instead increase all boxes’ confidence up to
τ + κ by maximizing:

LFP
YOLO(x� δ) :=

∑
1≤b≤B

min (conf(f(x� δ), b)− (τ + κ), 0) . (3.3)

3.5.4 Results

We now instantiate and evaluate the attack strategies C1-C4 from Table 3.1 on our seven ad-classifiers

Attack C1: Evasion with adversarial ad-disclosures. Figure 3.6 shows examples of perturbed
AdChoices logos that fool all element-based classifiers. An ad-network can use these to evade ad-
blocking.

bbc.com/sports

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 41

Original False Negative False Positive

Figure 3.7: Adversarial examples for frame-based classifiers. These are attacks (C2) and
(C4) in Table 3.1. Top: Attacks on our YOLOv3 model that detects the AdChoices logo. Bottom:
attacks on the ad-classifier from [112] (we crafted similar adversarial examples for the classifier used
in Percival [261])
.

Average hashing is invariant to small `p noise, but this comes at the cost of high sensitivity to
other perturbations: we evade it by adding up to 3 transparent rows and columns to the logo. When
overlaid on an ad, the rendered content is identical.

Adversarial examples for OCR bear similarities to CAPTCHAs. As ML models can solve
CAPTCHAs [24, 280], one may wonder why transcribing ad disclosures is harder. The difference
lies in the stronger threat model that ad-blockers face. Indeed, CAPTCHA creators have no access
to the ML models they aim to fool, and must thus craft universally hard perturbations. Attacking
an ad-blocker is much easier as its internal model must be public. Moreover the ad-blocker must
also prevent false positives—which CAPTCHA solvers do not need to consider—and operate under
stricter real-time constraints on consumer hardware.

Attack C2: Evasion with adversarial ads. Ad networks can directly perturb the ads they
server to evade frame or page-based ad-blockers. For frame-based classifiers, the attacks are very
simple and succeed with 100% probability (see Figure 3.7). We verified that the ad-classifier used by
Percival [261] is vulnerable to similar attacks. Specifically, we create a valid HTML page containing
two images—an ad and an opaque white box—which are both misclassified when the page is rendered
in Percival’s modified Chromium browser (see Figure 3.8).

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 42

(a) Page displayed in Chromium. (b) Page displayed in Percival.

Figure 3.8: Attack on the Percival browser from [261]. On the left, a dummy web page is
displayed in the standard Chromium browser with two ads (top), an adversarially perturbed ad
(middle) and two adversarial opaque boxes (bottom). On the right, the same page is displayed in
the Percival browser. The two unperturbed ads on top are correctly blocked, but the adversarial ad
evades detection, and the adversarial opaque boxes are mistakenly blocked.

For our page-based model, crafting a “doubly-universal” perturbation that works for all ads on all
websites is hard (this is due to the model’s reliance on page layout for detecting ads, see Section 3.3
for details). Instead, we show that an ad-network can create a universal perturbation that works
with 100% success rate for all ads that it serves on a specific domain (see Figure 3.10). For this
attack, we maximize the LFN

YOLO loss over the collected screenshots in Dtrain
BBC, by applying the same

perturbation δ over all ad frames.

Attack C3: Evasion with adversarial content. These attacks apply to page-based ad-blockers
and allow publishers to evade ad-blocking while only perturbing HTML elements that they control
(which crucially does not include the content of ad-frames). We show that a publisher can actually
perturb the full screenshot image fed into the classifier using CSS techniques. The HTML pertur-
bation is a near-transparent mask, that is overlaid on the entire web page (see Figure 3.9). The CSS

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 43

<div id=" overlay "></div >

#overlay {
background-image : url("data:image/png; base64,... ");
width : 100%; height : 100%; top: 0; left: 0;
position : fixed ; z-index : 10000; pointer-events : none;
opacity : 0.01;

}

Figure 3.9: Code for attack C4-U. An adversarial mask is tiled over the full page with a small
opacity factor.

properties z-index and pointer-events are used to display the mask over all other web content,
but allow underlying elements to still be accessed and clicked normally.

Adding a mask over the full image is prohibitive, as the mask would be large and tied to a fixed
resolution. We thus build a smaller mask and tile it over the full page. We generate a universal
adversarial mask δ of 20KB by maximizing LFN

YOLO over Dtrain. The overlaid mask evades detection
of all ads in our evaluation set (see Figure 3.11, (b)). This attack can be deployed by any publisher,
to evade all ads. The perturbation mask is robust to scrolling and viewport changes when tested in
Google Chrome.

Figure 3.11 (c) shows a similar attack that overloads the ad-blocker. The transparent mask is
crafted to maximize LFN

YOLO over Dtrain, and creates many incorrect predictions that coerce the ad-
blocker into abdicating or breaking the site. On all websites, the mask causes the model to detect
abnormally large ads or fail to detect real ads.

These attacks are powerful and can be re-used by any publisher. Yet, ad-blockers might try to
detect certain CSS tricks and disable them. We thus also propose stealthier attacks tuned to a single
domain. For pages on BBC.com, we create a small perturbation (40× 1020 px) that is applied to the
white background right below an ad frame (see Figure 3.10(b)) and that universally applies to all
pages from that publisher that use a similar layout.

Attack C4: Detection with adversarial honeypots To detect ad-blocking, publishers can
use honeypots that falsely trigger ad-blockers [290]. The false positives in Figure 3.6 and Figure 3.7
are innocuous elements that are falsely classified as ads or ad-disclosures. For OCR and the model
of Hussain et al. [112], generating near-opaque black elements worked best. As average hashing is
invariant to changes in image intensity, creating false positives for it is trivial.

For page-based ad-blockers, our first attack embeds a perturbation into a small page footer (see
Figure 3.11 (d)). The footer causes false predictions for 19/20 pages in our evaluation set, and
is robust to a user scrolling over the page. Figure 3.10 (c) shows a stealthier attack—tailored to
bbc.com—that hides a honeypot in the page header and has 100% success rate across pages from
that publisher.

BBC.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 44

(a) Original Page: The ad banner is correctly de-
tected.

(b) Attack C3-C4: The publisher perturbs the
white background beneath the ad to evade ad-
blocking (C4). Alternatively, an ad network adds
a universal mask on the ad (C3, not displayed here
for brevity). In both cases, the perturbation is in-
visible to the user.

(c) Attack C1: The publisher adds a honeypot el-
ement to the page header (top-right) to detect an
ad-blocker.

Figure 3.10: Universal adversarial examples for page-based ad-blockers on BBC.com. Ex-
amples of evasion attacks C3-C4 and detection attack C1.

3.6 Attacks Beyond Misclassification

3.6.1 Attacks Against Ad-blocker Actions

Ad-blockers usually run at a higher privilege level than any web page. They are generally not affected
by the same-origin policy and can read and write any part of any web page that the user visits.

The main privileged action taken by an ad-blocker is altering of web content. Attackers exploit
this action when using honeypots to detect ad-blockers. But triggering ad-blocker actions can have
more pernicious effects. Below, we describe two attacks that can be deployed by arbitrary content
creators (e.g., a Facebook user) to trigger malicious ad-blocker actions in other users’ browsers.

Attack A1: Cross-boundary blocking In this attack (see Figure 3.1) a malicious user (Jerry)
uploads adversarial content that triggers a Sentinel-like ad-blocker into marking content of another
user (Tom) as and ad. This “cross-boundary blocking attack” hijacks the ad-blocker’s elevated
privilege to bypass web security boundaries.

To mount the attack, we optimally perturb Jerry’s content so as to maximize the model’s confi-
dence in a box that covers Tom’s content. The attack works because object-detector models such as
YOLOv3 [213] predict bounding boxes by taking into account the full input image—a design fea-
ture which increases accuracy and speed [214]. As a result, adversarial content can affect bounding
boxes in arbitrary image regions. Our attack reveals an inherent vulnerability of any object detector
applied to web content—wherein the model’s segmentation misaligns with web-security boundaries.

BBC.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 45

(a) Original Page: two ads are detected. (b) Attack C3 (Universal): The publisher overlays
a transparent mask over the full page to evade the ad-
blocker.

(c) Attack C3 (Universal): The publisher overlays
a mask on the page to generate unreasonably large
boxes and disable the ad-blocker.

(d) Attack C4 (Universal): The publisher adds
an opaque footer to detect an ad-blockers that blocks
the honeypot element (bottom-left).

Figure 3.11: Universal adversarial examples for page-based ad-blockers. Displays examples
of universal evasion attacks (C3) and detection attacks (C4) on a page from theguardian.com. Best
viewed with 2x zoom in.

Attack A2: Cross-origin web requests In addition to searching for the “Sponsored” text on
Facebook, Ad-Highlighter [243] uses the fact that the ad-disclosure contains a link to Facebook’s ad-
policy page as an additional signal. Specifically, Ad-Highlighter parses the DOM in search for links
containing the text “Sponsored” and determines whether the link leads to Facebook’s ad statement
page by simulating a user-click on the link and following any redirects.10

These techniques are dangerous and enable serious vulnerabilities (e.g., CSRF [202], DDoS [201]
or click-fraud [49]) with consequences extending beyond ad-blocking. Clicking links on a user’s
behalf is a highly privileged action, which can thus be exploited by any party that can add links in a
page, which can include arbitrary website users. To illustrate the dangers of behavioral ad-blocking,
we create a regular Facebook post with an URL to a web page with title “Sponsored”. Facebook
converts this URL into a link which Ad-Highlighter clicks on. Albeit sound, this attack luckily
and coincidentally fails due to Facebook’s Link Shim, that inspects clicked links before redirecting
the user. Ad-Highlighter fails to follow this particular redirection thus inadvertently preventing

10Ad-Highlighter simulates clicks because Facebook used to resolve links server-side (the ad-disclosure used to link
to www.facebook.com/#). Facebook recently changed its obfuscation of the link in post captions. It now uses an empty
<a> tag that is populated using JavaScript during the click event. This change fools Ad-Highlighter and still requires
an ad-blocker to simulate a potentially dangerous click to uncover the link.

theguardian.com
www.facebook.com/#

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 46

<a>
Sp </ span >
S
on </ span >
S
so </ span >
S
red </ span >
S

.c2 { font-size : 0; }

Figure 3.12: CSS obfuscation on Facebook.com. (Left) HTML and CSS that render Facebook’s
“Sponsored” caption. (Right) A proof-of-concept where the ad-disclosure is an adversarial image
that Ad-Highlighter’s OCR decodes as “8parisared”.

the attack. Yet, this also means that Facebook could use the same layer of indirection for their
“Sponsored” link. If the behavioral ad-blocking idea were to be extended to disclosure cues on other
websites (e.g., the AdChoices logo), such attacks would also be easily mounted. Pre-filtering inputs
passed to a behavioral layer does not help. Either the filter is perfect, in which case no extra step
is required—or its false positives can be exploited to trigger the behavioral component.

3.6.2 Attacks Against Page Segmentation

In this section, we describe attacks targeting the ad-blocker’s page segmentation logic, in an ef-
fort to evade the ad-blocker or exhaust its resources. These attacks use standard web techniques
(e.g., HTML obfuscation) and are already applied in an ongoing arms race between Facebook and
uBlock [260]. We argue that to escape the arms race caused by these segmentation attacks, percep-
tual ad-blockers have to operate over rendered web-content (i.e., frame or page-based approaches),
which in turn increases the attack surface for adversarial examples on the ad-blocker’s visual classi-
fier.

Attack S1: DOM obfuscation These attacks aim to fool the ad-blocker into feeding ambiguous
inputs to its classifier. They exploit some of the same limitations that affect traditional filter lists,
and can also be applied to element-based ad-blockers that rely on computer-vision classifiers, such
as Ad-Highlighter.

DOM obfuscation is exemplified by Facebook’s continuous efforts to regularly alter the HTML
code of its “Sponsored” caption (see Figure 3.12). Facebook deploys a variety of CSS tricks to
obfuscate the caption, and simultaneously embeds hidden ad-disclosure honeypots within regular
user posts in an effort to deliberately cause site-breakage for ad-block users. Facebook’s obfuscation
attempts routinely fool uBlock [260] as well as Ad-Highlighter.

Facebook.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 47

Figure 3.13: Image sprites of the AdChoices logo. Image-sprites are sets of images stored in
a single file, and segmented using CSS rules. For example, the left sprite allows to smoothly switch
from the icon to the full logo on hover. The right sprite is used by cnn.com to load a variety of logos
used on the page in a single request.

If ad-blockers adopt computer-vision techniques as in Ad-Highlighter, DOM obfuscation attacks
still apply if ad-blockers assume a direct correspondence between elements in the DOM and their
visual representation when rendered. For example, Ad-Highlighter assumes that all img tags in
the DOM are shown as is, thereby ignoring potentially complex CSS transformations applied when
rendering HTML. This can cause the downstream classifier to process images with unexpected
properties.

Ad networks already use CSS rules that significantly alter rendered ad-disclosures. Figure 3.13
shows two AdChoices logos found on cnn.com. These are image-sprites—multiple images included
in a single file to minimize HTTP requests—that are cropped using CSS to display only a single
logo at a time. Image-sprites highlight an exploitable blind-spot in element-based perceptual ad-
blockers—e.g., the logos in Figure 3.13 fool Ad-Highlighter [243]. Images can also be fragmented
into multiple elements. The ad-blocker then has to stitch them together to correctly recognize the
image (e.g., Google’s AdChoices logo consists of two separate SVG tags).

Finally, the rules used by ad-blockers to link ad-disclosures back to the corresponding ad frame
can also be targeted. For example, on pages with an integrated ad network, such as Facebook, the
publisher could place ad-disclosures (i.e., “Sponsored” links) and ads at arbitrary places in the DOM
and re-position them using CSS.

Frame-based and page-based ad-blockers bypass all these issues by operating on already-rendered
content.

Attack S2: Over-segmentation Here the publisher injects a large number of elements into the
DOM (say, by generating dummy images in JavaScript) to overwhelm an ad-blocker’s classifier with
inputs and exhaust its resources. In response, ad-blockers would have to aggressively filter DOM
elements—with the risk of these filters’ blind spots being exploited to evade or detect ad-blocking.
The viability of this attack may seem unclear, as users might blame publishers for high page-load
latency resulting from an overloaded ad-blocker. Yet, Facebook’s efforts to cause site-breakage by
embedding ad-disclosure honeypots within all regular user posts demonstrates that some ad networks
may result to such tactics.

cnn.com

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 48

3.6.3 Attacks Against Training

For classifiers that are trained on labeled images, the data collection and training phase can be
vulnerable to data poisoning attacks (D1)—especially when crowdsourced as with Sentinel [272].
We describe these attacks for completeness, but refrain from a detailed evaluation as the test-time
attacks described in Section 3.5 through Section 3.6.2 are conceptually more interesting and more
broadly applicable.

In these attacks, the adversary joins the crowdsourced data collection to submit maliciously
crafted images that adversely influence the training process. For example, malicious training data
can contain visual backdoors [44], which are later used to evade the ad-blocker. The ad-blocker
developer cannot tell if a client is contributing real data for training or malicious samples. Similar
attacks against crowdsourced filter lists such as Easylist are theoretically possible. A malicious
user could propose changes to filter lists that degrade their utility. However, new filters are easily
interpreted and vetted before inclusion—a property not shared by visual classifiers.

Sentinel’s crowdsourced data collection of users’ Facebook feeds also raises serious privacy con-
cerns, as a deployed model might leak parts of its training data [81, 235].

3.7 Discussion

We have presented multiple attacks to evade, detect and abuse recently proposed and deployed
perceptual ad-blockers. We now provide an in-depth analysis of our results.

3.7.1 A New Arms Race

Our results indicate that perceptual ad-blocking will either perpetuate the arms race of filter lists,
or replace it with an arms race around adversarial examples. Where perceptual ad-blockers that
rely heavily on page markup (e.g., as in uBlock [260] or Ad-Highlighter [243]) remain vulnerable
to continuous markup obfuscation [260], visual classification of rendered web content (as in Sen-
tinel [272] or Percival [261]) inherits a crucial weakness of current visual classifiers—adversarial
examples [95, 246].

The past years have seen considerable work towards mitigating the threat of adversarial examples.
Yet, defenses are either broken by improved attacks [6, 26], or limited to restricted adversaries [48,
137, 159, 207, 255]. Even if ad-block developers proactively detect adversarial perturbations and
blacklist them (e.g., using adversarial training [159, 246] to fine-tune their classifier), adversaries can
simply regenerate new attacks (or use slightly different perturbations [230]).

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 49

3.7.2 Strategic Advantage of Adversaries and Lack of Defenses

Our attacks with adversarial examples are not a quid pro quo step in this new arms race, but indicate
a pessimistic outcome for perceptual ad-blocking. Indeed, these ad-blockers operate in essentially
the worst threat model for visual classifiers. Their adversaries have access to the ad-blockers’ code
and prepare offline digital adversarial examples to trigger both false-negatives and false-positives in
the ad-blocker’s online (and time constrained) decision making.

Even if ad-blockers obfuscate their code, black-box attacks [114] or model stealing [194, 253]
still apply. Randomizing predictions or deploying multiple classifiers is also ineffective [6, 106]. For
example, some of the adversarial examples in Figure 3.6 work for both OCR and SIFT despite being
targeted at a single one of these classifiers.

The severity of the above threat model is apparent when considering existing defenses to adver-
sarial examples. For instance, adversarial training [159, 246] assumes restricted adversaries (e.g.,
limited to `∞ perturbations), and breaks under other attacks [71, 230, 250]. Robustness to adver-
sarial false positives (or “garbage examples” [95]) is even harder. Even if ad-blockers proactively
re-train on adversarial examples deployed by publishers and ad-networks, training has a much higher
cost than the attack generation and is unlikely to generalize well to new perturbations [220]. De-
tecting adversarial examples [98, 168] (also an unsolved problem [27]) is insufficient as Ad-blockers
face both adversarial false-positives and false-negatives, so merely detecting an attack does not aid
in decision-making. A few recently proposed defenses achieve promising results in some restricted
threat models, e.g., black-box attacks [41] or physically-realizable attacks [48]. These defenses are
currently inapplicable in the threat model of perceptual ad-blocking, but might ultimately reveal
new insights for building more robust models.

Our attacks also apply if perceptual ad-blocking is used as a complement to filter lists rather
than as a standalone approach. Ad-blockers that combine both types of techniques are vulnerable
to attacks targeting either. If perceptual ad-blocking is only used passively (e.g., to aid in the
maintenance of filter lists, by logging potential ads that filter lists miss), the ad-blocker’s adversaries
still have incentive to attack to delay the detection of new ads.

This stringent threat model above also applies to ML-based ad-blockers that use URL and DOM
features [15, 101, 119], which have not been evaluated against adaptive white-box attacks.

3.7.3 Beyond the Web and Vision

The use of sensory signals for ad-blocking has been considered outside the Web, e.g., AdblockRadio
detects ads in radio streams using neural networks. Emerging technologies such as virtual real-
ity [189], voice assistants [136] and smart TVs [180] are posited to become platforms for large-scale
targeted advertising, and perceptual ad-blockers might emerge in those domains as well.

The threats described in this paper—and adversarial examples in particular—are likely to also
affect perceptual ad-blockers that operate outside the vision domain. To illustrate, we take a closer

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 50

Figure 3.14: Original and adversarial audio waveforms. Shows a ten second segment of an ad
audio waveform (thick blue) overlaid with its adversarial perturbation (thin red).

look at AdblockRadio, a radio client that continuously classifies short audio segments as speech,
music or ads based on spectral characteristics. When ads are detected, the radio lowers the volume
or switches stations. Radio ad-blockers face a different threat model than on the Web. All content,
including ads, is served as raw audio from a single origin, so filter lists are useless. The publisher
cannot run any client-side code, so ad-block detection is also impossible. Yet, the threat of adversarial
examples does apply. Indeed, we show that by adding near-inaudible11 noise to the ad content in
AdblockRadio’s demo podcast, the perturbed audio stream evades ad detection.

Concretely, AdblockRadio takes as input a raw audio stream, computes the Mel-frequency cep-
stral coefficients (MFCCs), and splits them into non-overlapping windows of 4 seconds. Each segment
is fed into a standard feed-forward classifier that predicts whether the segment corresponds to music,
speech, or an ad. A post-processing phase merges all consecutive segments of a same class, and re-
moves ad-segments. As the whole prediction pipeline is differentiable, crafting adversarial examples
is straightforward: we use projected gradient descent (in the l∞ norm) to modify the raw ad audio
segments so as to minimize the classifier’s confidence in the ad class. The resulting audio stream
fully bypasses AdblockRadio’s ad detection. An ad segment in the original and adversarial audio
waveforms is displayed in Figure 3.14.

3.8 Related Work

The work in this chapter bridges two areas of computer security research—studies of the online
ad-ecosystem and associated ad-blocking arms race, and adversarial examples for ML models.

Behavioral advertising. A 2015 study found that 22% of web users use ad-blockers, mainly due
to intrusive behavior [138, 205, 237, 262]. The use of ad-disclosures—which some perceptual ad-
blockers rely on—is rising. On the Alexa top 500, the fraction of ads with an AdChoices logo has
grown from 10% to 60% in five years [108, 244]. Yet, less than 27% of users understand the logo’s
meaning [148, 262].

11The perturbed audio stream has a signal-to-noise ratio of 37 dB.

CHAPTER 3. A SECURITY APPLICATION: EVADING PERCEPTUAL AD-BLOCKERS 51

Ad-blocking. Limitations of filter lists are well-studied [161, 266, 270]. Many new ad-blocker
designs (e.g., [15, 101, 119]) replace hard-coded rules with ML models trained on similar features
(e.g., markup [57] or URLs [140]). Many of these works limit their security analysis to non-adaptive
attacks. Ours is the first to rigorously evaluate ML-based ad-blockers.

Ad-block detection has spawned an arms race around anti-ad-blocking scripts [176, 177, 182].
Iqbal et al. [118] and Zhu et al. [290] detect anti-ad-blocking using code analysis and differential-
testing. Storey et al. [244] build stealthy ad-blockers that aim to hide from client-side scripts, a
challenging task in current browsers.

Adversarial examples. Our study of perceptual ad-blocking is the first application of adversarial
examples in a real-world web-security context. Prior work attacked image classifiers [26, 95, 191, 246],
malware [99], speech recognition [28] and others. We make use of white-box attacks on visual
classifiers [26, 159], sequential models [28, 238] and object detectors [73]. We show that black-box
attacks [114] are a generic alternative to prior attacks on SIFT [110].

Attacking page-based ad-blockers introduce novel challenges. Perturbing HTML bares similar-
ities to discrete domain attacks, e.g., PDF malware detection [240]. The ad-blocker’s inputs can
also be controlled by multiple entities, a constraint reminiscent of those that arise in physical-world
attacks [7, 73, 74, 144, 228].

Preventing adversarial examples is an open problem. Adversarial training is a viable strategy [95,
144, 159, 255], but considers a less stringent threat model than perceptual ad-blockers.

3.9 Conclusion

We have presented a comprehensive security evaluation of perceptual ad-blocking. To understand
the design space of these recently deployed systems, we have derived a unified architecture that
incorporates and extends prior work. Our analysis of this architecture has revealed multiple vulner-
abilities at every stage of the visual ad-classification pipeline. We have demonstrated that current
visual ad-classifiers are inherently vulnerable to adversarial examples—the first application of these
attacks to web-security. We have shown how to craft near-imperceptible perturbation for ads, ad-
disclosures, and native content, in order to evade or detect ad-blocking with seven different classifiers.
Finally, we have discovered a powerful attack on page-based ad-blockers, wherein a malicious user
fools the model into blocking content supposedly protected by web-security boundaries.

Our aim was to highlight the fundamental vulnerabilities that perceptual ad-blockers inherit from
existing image classifiers. As long as defenses to adversarial examples are elusive, perceptual ad-
blockers will be dragged into a new arms race in which they start from a precariously disadvantaged
position—given the stringent threat model that they must survive.

Chapter 4

Limitations of Defenses: Multiple
Perturbation Types

In the following two chapters, we explore inherent limitations of current techniques that aim to make
machine learning models robust to adversarial examples.

For concreteness, suppose we aimed to build a robust perceptual ad-blocker that can resist the
type of attacks we have described in Chapter 3. These attacks add an imperceptible perturbation (of
small `∞ norm) to the classifier’s inputs to cause a change in the classifier’s outputs. Thus, as a first
goal we could consider the challenge of building classifiers that are robust to small perturbations (in
the `∞ norm) of their inputs. This goal can be solved—at least partially—using successful defense
techniques such as adversarial training [159] or certified defenses [207, 271].

Yet, solving this first goal is far from sufficient for building a classifier that is genuinely robust
against a motivated attacker. Indeed, while we restricted ourselves to perturbations of small `∞ norm
in Chapter 3, this was merely a convenience to easily convince ourselves that these perturbations
are indeed imperceptible. In practice, an attacker could very well also craft perturbations that have
a large `∞ norm, and yet are still imperceptible (e.g., by flipping a small number of pixels [191] or
applying a minor translation to an input [71]). Thus, a robust classifier should be robust not only to
perturbations that are small under one chosen norm type, but to a broad range of perceptually-small
perturbations.

Unfortunately, existing defenses provide empirical (or certifiable) robustness guarantees for one
perturbation type only, and typically offer no guarantees against other attacks [222, 230]. Worse,
increasing robustness to one perturbation type has been found to increase vulnerability to others [71,
222]. This leads us to the central problem considered in this chapter:

Can we achieve adversarial robustness to different types of perturbations simultaneously?

Note that even though prior work has attained robustness to different perturbation types [71,

52

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 53

159, 222], these results may not compose. For instance, an ensemble of two classifiers—each of which
is robust to a single type of perturbation—may be robust to neither perturbation. Our aim is to
study the extent to which it is possible to learn models that are simultaneously robust to multiple
types of perturbation.

To gain intuition about this problem, we first study a simple and natural classification task,
that has been used to analyze trade-offs between standard and adversarial accuracy [259], and the
sample-complexity of adversarial generalization [220]. We define Mutually Exclusive Perturbations
(MEPs) as pairs of perturbation types for which robustness to one type implies vulnerability to the
other. For this task, we prove that `∞ and `1 perturbations are MEPs and that `∞ perturbations
and input rotations and translations [71] are also MEPs. Moreover, for these MEP pairs, we find that
robustness to either perturbation type requires fundamentally different features. The existence of
such a trade-off for this simple classification task suggests that it may be prevalent in more complex
statistical settings.

To complement our formal analysis, we introduce new adversarial training schemes for multiple
perturbations. For each training point, these schemes build adversarial examples for all perturbation
types and then train either on all examples (the “avg” strategy) or only the worst example (the “max”
strategy). These two strategies respectively minimize the average error rate across perturbation
types, or the error rate against an adversary that picks the worst perturbation type for each input.

For adversarial training to be practical, we also need efficient and strong attacks [159]. We
show that Projected Gradient Descent [144, 159] is inefficient in the `1 case, and design a new
attack, Sparse `1 Descent (SLIDE), that is both efficient and competitive with strong optimization
attacks [39].

We experiment with MNIST and CIFAR-10. MNIST is an interesting case-study, as distinct
models from prior work attain strong robustness to all perturbations we consider [71, 159, 222],
yet no single classifier is robust to all attacks [71, 221, 222]. For models trained on multiple `p
attacks (`1, `2, `∞ for MNIST, and `1, `∞ for CIFAR-10), or on both `∞ and spatial transforms [71],
we confirm a noticeable robustness trade-off. Figure 4.1 plots the test accuracy of models Advmax

trained using our “max” strategy. In all cases, robustness to multiple perturbations comes at a cost—
usually of 5-10% additional error—compared to models trained against each attack individually (the
horizontal lines).

Robustness to `1, `2 and `∞ noise on MNIST is a striking failure case, where the robustness trade-
off is compounded by gradient-masking [6, 194, 255]. Extending prior observations [149, 159, 222],
we show that models trained against an `∞ adversary learn representations that mask gradients
for attacks in other `p norms. When trained against first-order `1, `2 and `∞ attacks, the model
learns to resist `∞ attacks while giving the illusion of robustness to `1 and `2 attacks. This model
only achieves 52% accuracy when evaluated on gradient-free attacks [21, 222]. This shows that,
unlike previously thought [259], adversarial training with strong first-order attacks can suffer from

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 54

0 2 4 6 8 10

Epochs

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

Adv∞
Adv1
Adv2

Advmax tested on ℓ∞
Advmax tested on ℓ1
Advmax tested on ℓ2
Advmax tested on all

(a) MNIST models trained on `1, `2 & `∞ attacks.

0 2 4 6 8 10

Epochs

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

Adv∞
AdvRT

Advmax tested on ℓ∞
Advmax tested on RT
Advmax tested on both

(b) MNIST models trained on `∞ and RT attacks.

0 20000 40000 60000 80000

Steps

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy

Adv∞

Adv1

Advmax tested on ℓ∞
Advmax tested on ℓ1
Advmax tested on both

(c) CIFAR-10 models trained on `1 and `∞ attacks.

0 20000 40000 60000 80000

Steps

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy Adv∞

AdvRT

Advmax tested on ℓ∞
Advmax tested on RT
Advmax tested on both

(d) CIFAR-10 models trained on `∞ and RT attacks.

Figure 4.1: Multi-robustness trade-off on MNIST (top) and CIFAR-10 (bottom). For a
union of `p balls (left), or of `∞ noise and rotation-translations (RT) (right), we train models Advmax
on the strongest perturbation-type for each input. We report the test accuracy of Advmax against
each individual perturbation type (solid line) and against their union (dotted brown line). The
vertical lines show the adversarial accuracy of models trained and evaluated on a single perturbation
type.

gradient-masking. We thus argue that attaining robustness to `p noise on MNIST requires new
techniques (e.g., training on expensive gradient-free attacks, or scaling certified defenses to multiple
perturbations).

MNIST has sometimes been said to be a poor dataset for evaluating adversarial examples de-
fenses, as some attacks are easy to defend against (e.g., input-thresholding or binarization works
well for `∞ attacks [222, 259]). Our results paint a more nuanced view: the simplicity of these `∞
defenses becomes a disadvantage when training against multiple `p norms. We thus believe that
MNIST should not be abandoned as a benchmark just yet. Our inability to achieve multi-`p robust-
ness for this simple dataset raises questions about the viability of scaling current defenses to more
complex tasks.

Looking beyond adversaries that choose from a union of perturbation types, we introduce a
new affine adversary that may linearly interpolate between perturbations (e.g., by compounding
`∞ noise with a small rotation). We prove that for locally-linear models, robustness to a union of
`p perturbations implies robustness to affine attacks. In contrast, affine combinations of `∞ and
spatial perturbations are provably stronger than either perturbation individually. We show that
this discrepancy translates to neural networks trained on real data. Thus, in some cases, attaining

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 55

robustness to a union of perturbation types remains insufficient against a more creative adversary
that composes perturbations.

Our results show that despite recent successes in achieving robustness to single perturbation
types, many obstacles remain towards attaining truly robust models. Beyond the robustness trade-
off, efficient computational scaling of current defenses to multiple perturbations remains an open
problem.

4.1 Theoretical Limits to Multi-perturbation Robustness

We study statistical properties of adversarial robustness in a natural statistical model introduced
in [259], and which exhibits many phenomena observed on real data, such as trade-offs between
robustness and accuracy [259] or a higher sample complexity for robust generalization [222]. This
model also proves useful in analyzing and understanding adversarial robustness for multiple pertur-
bations. Indeed, we prove a number of results that correspond to phenomena we observe on real
data, in particular trade-offs in robustness to different `p or rotation-translation attacks [71].

We follow a line of works that study distributions for which adversarial examples exist uncon-
ditionally [75, 90, 132, 160, 225, 259]. These distributions, including ours, are much simpler than
real-world data, and thus need not be evidence that adversarial examples are inevitable in practice.
Rather, we hypothesize that current ML models are highly vulnerable to adversarial examples be-
cause they learn superficial data statistics [84, 115, 124] that share some properties of these simple
distributions.

In prior work, a robustness trade-off for `∞ and `2 noise is shown in [132] for data distributed
over two concentric spheres. Our conceptually simpler model has the advantage of yielding results
beyond `p norms (e.g., for spatial attacks) and which apply symmetrically to both classes. Building
on work by Xu et al. [277], Demontis et al. [60] show a robustness trade-off for dual norms (e.g., `∞
and `1 noise) in linear classifiers.

4.1.1 Adversarial Risk for Multiple Perturbation Models

We assume n perturbation types, each characterized by a set S of allowed perturbations for an input
x. The set S can be an `p ball [95, 246] or capture other perceptually small transforms such as image
rotations and translations [71]. For a perturbation δ ∈ S, an adversarial example is x̂ = x+ δ (this
is pixel-wise addition for `p perturbations, but can be a more complex operation, e.g., for rotations).

For a perturbation set S and model f , recall the adversarial risk from Definition 2.2:

Radv(f ;S) := Pr
(x,y)∼D

[
max
δ∈S

1{f(x+δ)6=y}

]
To extend Radv to multiple perturbation sets S1, . . . , Sn, we can consider the average error rate

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 56

for each Si, denoted Ravg
adv. This metric most clearly captures the trade-off in robustness across

independent perturbation types, but is not the most appropriate from a security perspective on
adversarial examples. A more natural metric, denoted Rmax

adv , is the error rate against an adversary
that picks, for each input, the worst perturbation from the union of the Si. More formally,

Rmax
adv (f ;S1, . . . , Sn) := Radv(f ;∪iSi) , Ravg

adv(f ;S1, . . . , Sn) := 1
n

∑
iRadv(f ;Si) . (4.1)

Most results in this section are lower bounds on Ravg
adv, which also hold for Ravg

max since Rmax
adv ≥

Ravg
adv.
Two perturbation types S1, S2 areMutually Exclusive Perturbations (MEPs), ifRavg

adv(f ;S1, S2) ≥
1/|C| for all models f (i.e., no model has non-trivial average risk against both perturbations).

4.1.2 A Binary Classification Task

We analyze the adversarial robustness trade-off for different perturbation types in a natural statistical
model introduced by Tsipras et al. [259]. Their binary classification task consists of input-label pairs
(x, y) sampled from a distribution D as follows (note that D is (d+ 1)-dimensional):

y
u.a.r∼ {−1,+1}, x0 =

+y,w.p. p0,

−y,w.p. 1− p0

, x1, . . . , xd
i.i.d∼ N (yη, 1) , (4.2)

where p0 ≥ 0.5, N (µ, σ2) is the normal distribution and η = α/
√
d for some positive constant α.

For this distribution, Tsipras et al. [259] show a trade-off between standard and adversarial
accuracy (for `∞ attacks), by drawing a distinction between the “robust” feature x0 that small `∞
noise cannot manipulate, and the “non-robust” features x1, . . . , xd that can be fully overridden by
small `∞ noise.

4.1.3 Small `∞ and `1 Perturbations are Mutually Exclusive

The starting point of our analysis is the observation that the robustness of a feature depends on
the considered perturbation type. To illustrate, we recall two classifiers from [259] that operate
on disjoint feature sets. The first, f(x) = sign(x0), achieves accuracy p0 for all `∞ perturbations
with ε < 1 but is highly vulnerable to `1 perturbations of size ε ≥ 1. The second classifier,
h(x) = sign(

∑d
i=1 xi) is robust to `1 perturbations of average norm below E[

∑d
i=1 xi] = Θ(

√
d), yet

it is fully subverted by a `∞ perturbation that shifts the features x1, . . . , xd by ±2η = Θ(1/
√
d).

We prove that this tension between `∞ and `1 robustness, and of the choice of “robust” features, is
inherent for this task:

Theorem 4.1. Let f be a classifier for D. Let S∞ be the set of `∞ bounded perturbations with
ε = 2η, and S1 the set of `1 bounded perturbations with ε = 2. Then, Ravg

adv(f ;S∞, S1) ≥ 1/2 .

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 57

The bound shows that no classifier can attain betterRavg
adv (and thusRmax

adv) than a trivial constant
classifier f(x) = 1, which satisfies Radv(f ;S∞) = Radv(f ;S1) = 1/2.

Proof. Our proof follows a similar structure to the proof of Theorem 2.1 in [259], although the anal-
ysis is slightly simplified in our case as we are comparing two perturbation models, an `∞ bounded
one and an `1 bounded one, that are essentially orthogonal to each other. With a perturbation of
size ε = 2η, the `∞ bounded noise can “flip” the distribution of the features x1, . . . , xd to reflect the
opposite label, and thus destroy any information that a classifier might extract from those features.
On the other side, an `1 bounded perturbation with ε = 2 can flip the distribution of x0. By sacri-
ficing some features, a classifier can thus achieve some robustness to either `∞ or `1 noise, but never
to both simultaneously.

For y ∈ {−1,+1}, let Gy be the distribution over feature x0 conditioned on the value of y.
Similarly, let Hy be the conditional distribution over features x1, . . . , xd. Consider the following
perturbations: δ∞ = (0,−2yη, . . . ,−2yη) has small `∞ norm, and δ1 = (−2x0, 0, . . . , 0) has small
`1 norm. The `∞ perturbation can change Hy to H−y, while the `1 perturbation can change Gy to
G−y.

Let f(x) be any classifier from Rd+1 to {−1,+1} and define:

p+− = Pr
x∼(G+1,H−1)

[f(x) = +1] , p−+ = Pr
x∼(G−1,H+1)

[f(x) = +1] .

The accuracy of f against the δ∞ perturbation is given by:

Pr[f(x+ δ∞) = y] = Pr[y = +1] · p+− + Pr[y = −1] · (1− p−+) = 1
2 · (1 + p+− − p−+) .

Similarly, the accuracy of f against the δ1 perturbation is:

Pr[f(x+ δ1) = y] = Pr[y = +1] · p−+ + Pr[y = −1] · (1− p+−) = 1
2 · (1 + p−+ − p+−) .

Combining these, we get Pr[f(x+ δ∞) = y] + Pr[f(x+ δ1) = y] = 1.
As δ∞ and δ1 are two specific `∞ and `1 bounded perturbations, the above is an upper-bound

on the accuracy that f achieves against worst-case perturbation within the prescribed noise models,
which concludes the proof.

Similar to [60], our analysis extends to arbitrary dual norms `p and `q with 1/p + 1/q = 1 and
p < 2. The perturbation required to flip the features x1, . . . , xn has an `p norm of Θ(d

1
p−

1
2) = ω(1)

and an `q norm of Θ(d
1
q−

1
2) = Θ(d

1
2−

1
p) = o(1). Thus, feature x0 is more robust than features

x1, . . . , xn with respect to the `q norm, whereas for the dual `p norm the situation is reversed.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 58

4.1.4 Small `∞ and Spatial Perturbations are Nearly Mutually Exclusive

We now analyze two other orthogonal perturbation types, `∞ noise and rotation-translations [71].
In some cases, increasing robustness to `∞ noise has been shown to decrease robustness to rotation-
translations [71]. We prove that such a trade-off is inherent for our binary classification task.

To reason about rotation-translations, we assume that the features xi form a 2D grid. We also
let x0 be distributed as N (y, α−2), a technicality that does not qualitatively change our prior results.
Note that the distribution of the features x1, . . . , xd is permutation-invariant. Thus, the only power
of a rotation-translation adversary is to “move” feature x0. Without loss of generality, we identify
a small rotation-translation of an input x with a permutation of its features that sends x0 to one of
N fixed positions (e.g., with translations of ±3px as in [71], x0 can be moved to N = 49 different
positions).

A model can be robust to these permutations by ignoring the N positions that feature x0 can
be moved to, and focusing on the remaining permutation-invariant features. Yet, this model is
vulnerable to `∞ noise, as it ignores x0. In turn, a model that relies on feature x0 can be robust to
`∞ perturbations, but is vulnerable to a spatial perturbation that “hides” x0 among other features.
Formally, we show:

Theorem 4.2. Let f be a classifier for D (with x0 ∼ N (y, α−2)). Let S∞ be the set of `∞ bounded
perturbations with ε = 2η, and SRT be the set of perturbations for an RT adversary with budget N .
Then, Ravg

adv(f ;S∞, SRT) ≥ 1/2−O(1/
√
N) .

Proof. The proof of this theorem follows a similar blueprint to the proof of Theorem 4.1. Recall
that an `∞ perturbation with ε = 2η can flip the distribution of the features x1, . . . , xn to reflect an
opposite label y. The tricky part of the proof is to show that a small rotation or translation can flip
the distribution of x0 to the opposite label, without affecting the marginal distribution of the other
features too much.

Recall that we model rotations and translations as picking a permutation π from some fixed set
Π of permutations over the indices in x, with the constraint that feature x0 be moved to at most N
different positions for all π ∈ Π.

We again define Gy as the distribution of x0 conditioned on y, and Hy for the distribution of
x1, . . . , xd. We know that a small `∞ perturbation can transform Hy into H−y. Our goal is to
show that a rotation-translation adversary can change (Gy,Hy) into a distribution that is very close
to (G−y,Hy). The result of the theorem then follows by arguing that no binary classifier f can
distinguish, with high accuracy, between `∞ perturbed examples with label y and rotated examples
with label −y (and vice versa).

We first describe our proof idea at a high level. We define an intermediate “hybrid” distribution
Zy where all d+ 1 features are i.i.d N(yη, 1) (that is, x0 now has the same distribution as the other
weakly-correlated features). The main step in the proof is to show that for samples from either

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 59

(Gy,Hy) or (G−y,Hy), a random rotation-translation yields a distribution that is very close (in total
variation) to Zy. From this, we then show that there exists an adversary that applies two rotations
or translations in a row, to first transform samples from (Gy,Hy) into samples close to Zy, and then
transform those samples into ones that are close to (G−y,Hy).

We will need a standard version of the Berry-Esseen theorem, stated hereafter for completeness.

Theorem 4.3 (Berry-Esseen [14]). Let X1, . . . , Xn be independent random variables with E[Xi] =
µi, E[X2

i] = σ2
i > 0, and E[|Xi|3] = ρi < ∞, where the µi, σi and ρi are constants independent of

n. Let Sn = X1 + · · · + Xn, with Fn(x) the CDF of Sn and Φ(x) the CDF of the standard normal
distribution. Then,

sup
x∈R

∣∣∣∣∣Fn(x)− Φ
(
x− E[Sn]√

Var [Sn]

)∣∣∣∣∣ = O(1/
√
n) .

For distributions P,Q, let ∆TV(P,Q) denote their total-variation distance. The below lemma is
the main technical result we need, and bounds the total variation between a multivariate Gaussian
P and a special mixture of multivariate Gaussians Q.

Lemma 4.4. For k > 1, let P be a k-dimensional Gaussians with mean µP = (λP , . . . , λP) and
identity covariance. For all i ∈ [k], let Qi be a multivariate Gaussian with mean µi and diagonal
covariance Σi where

(µi)j =

λQ if i = j

λP otherwise
and (Σi)(j,j) =

σ2
Q if i = j

1 otherwise
.

Define Q as a mixture distribution of the Q1, . . . ,Qk with probabilities 1/k. Assuming that λP , λQ, σQ
are constants independent of k, we have ∆TV(P,Q) = O(1/

√
k).

Proof of Lemma 4.4. 1 Let p(x) and q(x) denote, respectively, the pdfs of P and Q. Note that
q(x) =

∑k
i=1

1
k qi(x), where qi(x) is the pdf of Qi. We first compute:

q(x) =
k∑
i=1

1
k

1√
(2π)k · |Σi|

· e− 1
2 (x−µi)TΣ−1

i
(x−µi)

= e−
1
2 (x−µP)T(x−µP)√

(2π)k
· 1
k · σ2

Q

·
k∑
i=1

e−
1
2 t(xi)

= p(x) · 1
k · σ2

Q

·
k∑
i=1

e−
1
2 t(xi) ,

where
t(xi) := (σ−2

Q − 1)x2
i − (2λQσ−2

Q − 2λP)xi + (λ2
Qσ
−2
Q − λ

2
P) . (4.3)

1We thank Iosif Pinelis for his help with this proof (https://mathoverflow.net/questions/325409/).

https://mathoverflow.net/questions/325409/

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 60

Thus we have that

q(x) < p(x) ⇐⇒ 1
k · σ2

Q

·
k∑
i=1

e−
1
2 t(xi) < 1 .

The total-variation distance between P and Q is then ∆TV(P,Q) = p1 − p2, where

p1 := Pr
[
Sk < k · σ2

Q

]
, p2 := Pr

[
Tk < k · σ2

Q

]
, (4.4)

Sk :=
k∑
i=1

Ui , Tk := Sk−1 + Vk , Ui := e−
1
2 t(Zi) , Vn := e−

1
2 t(Wn) ,

and the Zi ∼ N (λP , 1), Wn ∼ N (λQ, σ2
Q) and all the Zi and Wn are mutually independent.

It is easy to verify that E[Ui] = σ2
Q, Var[Ui] = O(1), E[U3

i] = O(1), E[Wn] = O(1), Var[Wn] =
O(1),E[W 3

n] = O(1). Then, applying the Berry-Esseen theorem, we get:

p1 = Pr
[
Sk < k · σ2

Q

]
= Φ (0) +O

(
1√
k

)
= 1

2 +O

(
1√
k

)
,

p2 = Pr
[
Tk < k · σ2

Q

]
= Φ

(
k · σ2

Q − E[Tk]√
Var[Tk]

)
+O

(
1√
k

)
= Φ

(
O

(
1√
k

))
+O

(
1√
k

)
= 1

2 +O

(
1√
k

)
.

And thus,

∆TV(P,Q) = p1 − p2 = O(1/
√
k) . (4.5)

We now define a rotation-translation adversary A with a budget of N . It samples a random
permutation from the set Π of permutations that switch position 0 with a position in [0, N − 1] and
leave all other positions fixed (note that |Π| = N). Let A(Gy,Hy) denote the distribution resulting
from applying A to (Gy,Hy) and define A(G−y,Hy) similarly. Recall that Zy is a hybrid distribution
which has all features distributed as N (yη, 1).

Claim 4.5. ∆TV (A(Gy,Hy),Zy) = O(1/
√
N) and ∆TV (A(G−y,Hy),Zy) = O(1/

√
N)

Proof of Claim 4.5. For the first N features, samples output by A follow exactly the distribution
Q from Lemma 4.4, for k = N and λP = y · η, λQ = y, σ2

Q = α−2. Note that in this case, the
distribution P has each feature distributed as in Zy. Thus, Lemma 4.4 tells us that the distribution
of the first N features is the same as in Zy, up to a total-variation distance of O(1/

√
N). As

features xN . . . , xd are unaffected by A and thus remain distributed as in Zy, we conclude that the
total-variation distance between A’s outputs and Zy is O(1/

√
N).

The proof for A(G−y,Hy) is similar, except that we apply Lemma 4.4 with λQ = −y.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 61

Let Z̃y be the true distribution A(G−y,Hy), which we have shown to be close to Zy. Consider
the following “inverse” adversary A−1. This adversary samples z ∼ Z̃y and returns π−1(z), for
π ∈ Π, with probability

1
|Π| ·

f(G−y,Hy)(π−1(z))
fZ̃y (z) ,

where f(G−y,Hy) and fZ̃y are the probability density functions for (G−y,Hy) and for Z̃y.

Claim 4.6. A−1 is a RT adversary with budget N that transforms Z̃y into (G−y,Hy).

Proof of Claim 4.6. Note that A−1 always applies the inverse of a perturbation in Π. So feature x0

gets sent to at most N positions when perturbed by A−1.
Let Z be a random variable distributed as Z̃y and let h be the density function of the distribution

obtained by applying A−1 to Z. We compute:

h(x) =
∑
π∈Π

fZ̃y (π(x)) · Pr[A−1 picks permutation π | Z = π(x)]

=
∑
π∈Π

fZ̃y (π(x)) · 1
|Π| ·

f(G−y,Hy)(π(π−1(x)))
fZ̃y (π(x)) =

∑
π∈Π

1
|Π| · f(G−y,Hy)(x)

= f(G−y,Hy)(x) ,

so applying A−1 to Z̃y does yield the distribution (G−y,Hy).

We can now finally define our main rotation-translation adversary, A∗. The adversary first
applies A to samples from (Gy,Hy), and then applies A−1 to the resulting samples from Z̃y.

Claim 4.7. The adversary A∗ is a rotation-translation adversary with budget N . Moreover,

∆TV
(
A∗(Gy,Hy), (G−y,Hy)

)
= O(1/

√
N) .

Proof of Claim 4.7. The adversary A∗ first switches x0 with some random position in [0, N − 1] by
applyingA. Then, A−1 either switches x0 back into its original position or leaves it untouched. Thus,
A∗ always moves x0 into one of N positions. The total-variation bound follows by the triangular
inequality:

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 62

∆TV
(
A∗(Gy,Hy), (G−y,Hy)

)
= ∆TV

(
A−1(A(Gy,Hy)), (G−y,Hy)

)
≤ ∆TV

(
A−1(Zy), (G−y,Hy)

)
+ ∆TV (Zy,A(Gy,Hy))

≤ ∆TV
(
A−1(Z̃y), (G−y,Hy)

)︸ ︷︷ ︸
0

+ ∆TV
(
Z̃y, (G−y,Hy)

)︸ ︷︷ ︸
O(1/

√
N)

+ ∆TV (Zy,A(Gy,Hy))︸ ︷︷ ︸
O(1/

√
N)

= O(1/
√
N) .

To conclude the proof of Theorem 4.2, we define:

p+− = Pr
x∼(G+1,H−1)

[f(x) = +1] , p−+ = Pr
x∼(G−1,H+1)

[f(x) = +1] ,

p̃−+ = Pr
x∼A∗(G+1,H+1)

[f(x) = +1] , p̃+− = Pr
x∼(G−1,H−1)

[f(x) = +1] .

Then,

Pr[f(x+ δ∞) = y] + Pr[f(A∗(x)) = y] = 1
2p+− + 1

2(1− p−+) + 1
2 p̃−+ + 1

2(1− p̃+−)

= 1 + 1
2 (p+− − p̃+−) + 1

2 (p−+ − p̃−+)

≤ 1−O(1/
√
N) .

This proof yields an asymptotic lower-bound on Ravg
adv. We can also provide tight numerical

estimates for concrete parameter settings (see [250][Appendix G.1]).

4.1.5 Affine Combinations of Perturbations

We defined Rmax
adv as the error rate against an adversary that may choose a different perturbation

type for each input. If a model were robust to this adversary, what can we say about the robustness
to a more creative adversary that combines different perturbation types? To answer this ques-
tion, we introduce a new adversary that mixes different attacks by linearly interpolating between
perturbations.

For a perturbation set S and β ∈ [0, 1], we denote β · S the set of perturbations scaled down by
β. For an `p ball with radius ε, this is the ball with radius β ·ε. For rotation-translations, the attack
budget N is scaled to β ·N . For two sets S1, S2, we define Saffine(S1, S2) as the set of perturbations
that compound a perturbation δ1 ∈ β · S1 with a perturbation δ2 ∈ (1− β) · S2, for any β ∈ [0, 1].

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 63

Affine combinations of `p perturbations do not affect linear models. Consider one ad-
versary that chooses, for each input, `p or `q noise from balls Sp and Sq, for p, q > 0. The affine
adversary picks perturbations from the set Saffine defined as above. We show:

Claim 4.8. For a linear classifier f(x) = sign(wTx+b), we have Rmax
adv (f ;Sp, Sq) = Radv(f ;Saffine).

Thus, for linear classifiers, robustness to a union of `p perturbations implies robustness to affine
adversaries (this holds for any distribution).

Proof. Let
max
δ∈SU

wTδ = vmax, and min
δ∈SU

wTδ = vmin .

Let SU := Sp ∪ Sq. Note that any δ ∈ Saffine is of the form βδ1 + (1− β)δ2 for β ∈ [0, 1]. Moreover,
we have δ1 ∈ Sp ⊂ SU and δ2 ∈ Sq ⊂ SU. Thus,

max
δ∈Saffine

wTδ = vmax, and min
δ∈Saffine

wTδ = vmin .

Let h(x) = wTx+ b, so that f(x) = sign(h(x)). Then, we get

Pr
D

[∃δ ∈ Saffine : f(x+ δ) 6= y] = 1
2 Pr
D

[
∃δ ∈ Saffine : wTδ < −h(x) | y = +1

]
+ 1

2 Pr
D

[
∃δ ∈ Saffine : wTδ > h(x) | y = −1

]
= 1

2 Pr
D

[vmin < −h(x) | y = +1] + 1
2 Pr
D

[vmax > h(x) | y = −1]

= 1
2 Pr
D

[
∃δ ∈ SU : wTδ < −h(x) | y = +1

]
+ 1

2 Pr
D

[
∃δ ∈ SU : wTδ > h(x) | y = −1

]
= Pr
D

[∃δ ∈ SU : f(x+ δ) 6= y] .

The above proof extends to models that are locally linear within balls Sp and Sq around the data
points. For the distribution D of Section 4.1.2, we can further show that there are settings (distinct
from the one in Theorem 4.1) where: (1) robustness against a union of `∞ and `1 perturbations
is possible; (2) this requires the model to be non-linear; (3) yet, robustness to affine adversaries is
impossible (see Theorem 4.10 below). Our experiments in Section 4.3 show that neural networks
trained on CIFAR-10 have a behavior that is consistent with locally-linear models, in that they are
as robust to affine adversaries as against a union of `p attacks.

Affine combinations of `∞ and spatial perturbations can affect linear models. In con-
trast to the case above of combinations of `p and `q perturbations, compounding `∞ and spatial

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 64

perturbations yields a stronger attack, even for linear models:

Theorem 4.9. Let f(x) = sign(wTx + b) be a linear classifier for D (with x0 ∼ N (y, α−2)). Let
S∞ be some `∞ ball and SRT be rotation-translations with budget N > 2. Define Saffine as above.
Assume w0 > wi > 0,∀i ∈ [1, d]. Then Radv(f ;Saffine) > Rmax

adv (f ;S∞, SRT).

This result draws a distinction between the strength of affine combinations of `p noise, and
combinations of `∞ and spatial perturbations. It also shows that robustness to a union of perturba-
tions can be insufficient against a more creative affine adversary. These results are consistent with
behavior we observe in models trained on real data (see Section 4.3).

Proof. Note that our definition of affine perturbation allows for a different weighting parameter β
to be chosen for each input. Thus, the adversary that selects perturbations from Saffine is at least as
powerful as the one that selects perturbations from S∞ ∪SRT. All we need to show to complete the
proof is that there exists some input x that the affine adversary can perturb, while the adversary
limited to the union of spatial and `∞ perturbations cannot.

Without loss of generality, assume that the RT adversary picks a permutation that switches
x0 with a position in [0, N − 1], and leaves all other indices untouched. The main idea is that
for any input x where the RT adversary moves x0 to position j < N − 1, the RT adversary with
budget N is no more powerful than one with budget j + 1. The affine adversary can thus limit its
rotation-translation budget and use the remaining budget on an extra `∞ perturbation.

We now construct an input x such that: (1) x cannot be successfully attacked by an RT adversary
(with budget N) or by an `∞ adversary (with budget ε); (2) x can be attacked by an affine adversary.

Without loss of generality, assume that w1 = min{w1, . . . , wN−1}, i.e., among all the features
that x0 can be switched with, x1 has the smallest weight. Let y = +1, and let x1, . . . , xN−1 be
chosen such that arg min{x1, . . . , xN−1} = 1. We set

x0 := ε · ‖w‖1
w0 − w1

+ x1 .

Moreover, set xN , . . . , xd such that

wTx+ b = 1.1 · ε · ‖w‖1 .

Note that constructing such an x is always possible as we assumed w0 > wi > 0 for all 1 ≤ i ≤ d.
We now have an input (x, y) that has non-zero support under D. Let δ be a perturbation with

‖δ‖∞ ≤ ε. We have:

wT(x+ δ) + b ≥ wTx+ b− ε · ‖w‖1 = 0.1 · ε · ‖w‖1 > 0 ,

so f(wT(x+ δ) + b) = y, i.e., x cannot be attacked by any ε bounded `∞ perturbation.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 65

Define x̂i as the input x with features x0 and xi switched, for some 0 ≤ i < N . Then,

wTx̂i + b = wTx+ b− (w0 − wi) · (x0 − xi)

≥ wTx+ b− (w0 − w1) · (x0 − x1)

= wTx+ b− ε · ‖w‖1 = 0.1 · ε · ‖w‖1 > 0 .

Thus, the RT adversary cannot change the sign of f(x) either. This means that an adversary that
chooses from S∞ ∪ SRT cannot successfully perturb x.

Now, consider the affine adversary, with β = 2/N that first applies an RT perturbation with
budget 2

N · N = 2 (i.e., the adversary can only flip x0 with x1), followed by an `∞ perturbation
with budget (1 − 2

N) · ε. Specifically, the adversary flips x0 and x1 and then adds noise δ =
−(1− 2

N) · ε · sign(w). Let this adversarial example by x̂affine. We have

wTx̂affine + b = wTx+ b− (w0 − w1) · (x0 − x1)−
(

1− 2
N

)
· ε · ‖w‖1

= 1.1 · ε · ‖w‖1 − ε · ‖w‖1 −
(

1− 2
N

)
· ε · ‖w‖1

= −
(

0.9− 2
N

)
· ε · ‖w‖1

< 0 .

Thus, f(x̂affine) = −1 6= y, so the affine adversary is strictly stronger that the adversary that is
restricted to RT or `∞ perturbations.

Affine combinations of `p perturbations can affect non-linear models. In Claim 4.8 above,
we showed that for linear models, robustness to a union of `p perturbations implies robustness to an
affine adversary that interpolates between perturbation types. We show that this need not be the
case when the model is non-linear. In particular, we can show that for the distribution D introduced
in Section 4.1, non-linearity is necessary to achieve robustness to a union of `∞ and `1 perturbations
(with different parameter settings than for Theorem 4.1), but that at the same time, robustness to
affine combinations of these perturbations is unattainable by any model.

Theorem 4.10. Consider the distribution D with d ≥ 200, α = 2 and p0 = 1 − Φ(−2). Let S∞
be the set of `∞ bounded perturbation with ε = (3/2)η = 3/

√
d and let S1 be the set of `1 bounded

perturbations with ε = 3. Define Saffine as in Section 4.1.5. Then, there exists a non-linear classifier
g that achieves Rmax

adv (g;S∞, S1) ≤ 35%. Yet, for all classifiers f we have Radv(f ;Saffine) ≥ 50%.

Proof. We first prove that no classifier can achieve accuracy above 50% (which is achieved by the
constant classifier) against Saffine. The proof is very similar to the one of Theorem 4.1.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 66

Let β = 2/3, so the affine attacker gets to compose an `∞ budget of 2/
√
d and an `1 budget of

1. Specifically, for a point (x, y) ∼ D, the affine adversary will apply the perturbation

δ = (−x0,−y
2√
d
, . . . ,−y 2√

d
) = (−x0,−yη, . . . ,−yη) .

Let G0,0 be the following distribution:

y
u.a.r∼ {−1,+1}, x0 = 0, x1, . . . , xd

i.i.d∼ N (0, 1) .

Note that in G0,0, x is independent of y so no classifier can achieve more than 50% accuracy on G0,0.
Yet, note that the affine adversary’s perturbation δ transforms any (x, y) ∼ D into (x, y) ∼ G0,0.

We now show that there exists a classifier that achieves non-trivial robustness against the set of
perturbations S∞∪S1, i.e., the union of `∞ noise with ε = 3/

√
d and `1 noise with ε = 3. Note that

by Claim 4.8, this classifier must be non-linear. We define

f(x) = sign
(

3 · sign(x0) +
d∑
i=1

2√
d
· xi

)
.

The reader might notice that f(x) closely resembles the Bayes optimal classifier for D (which would
be a linear classifier). The non-linearity in f comes from the sign function applied to x0. Intuitively,
this limits the damage caused by the `1 noise, as sign(x0) cannot change by more than ±2 under
any perturbation of x0. This forces the `1 perturbation budget to be “wasted” on the other features
x1, . . . , xd, which are very robust to `1 attacks.

As a warm-up, we compute the classifier’s natural accuracy on D. For (x, y) ∼ D, let X =
y ·
∑d
i=1

2√
d
· xi be a random variable. Recall that η = 2/

√
d. Note that X is distributed as

y ·
d∑
i=1

2√
d
· N (yη, 1) =

d∑
i=1

2√
d
· N

(
2√
d
, 1
)

=
d∑
i=1
N
(

4
d
,

4
d

)
= N (4, 4) .

Recall that x0 = y with probability p0 = 1− Φ(−2) ≈ 0.977. We get:

Pr
D

[f(x) = y] = Pr
D

[
y ·

(
3 · sign(x0) +

d∑
i=1

2√
d
· xi

)
> 0
]

= Pr
D

[x0 = y] · Pr
D

[3 · y · sign(x0) +X > 0 | x0 = y]

+ Pr
D

[x0 6= y] · Pr
D

[3 · y · sign(x0) +X > 0 | x0 6= y]

= p · Pr [3 +N (4, 4) > 0] + (1− p) · Pr [−3 +N (4, 4) > 0] ≈ 99% .

We now consider an adversary that picks either an `∞ perturbation with ε = 3/
√
d or an `1

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 67

perturbation with ε = 3. It will suffice to consider the case where x0 = y. Note that the `∞ classifier
cannot meaningfully perturb x0, and the best perturbation is always δ∞ = [0,−y3/

√
d, . . . ,−y3/

√
d].

Moreover, the best `1 bounded perturbation is δ1 = [−2y,−y, 0, . . . , 0]. We have f(x + δ∞) =
sign(y · (3 +X − 6)) and f(x+ δ1) = sign(y · (−3 +X − 2/

√
d)). We now lower-bound the classifier’s

accuracy under the union SU := S∞ ∪ S1 of these two perturbation models:

Pr
D

[f(x+ δ) = y,∀δ ∈ SU] ≥ Pr
D

[x0 = y] · Pr
D

[f(x+ δ) = y,∀δ ∈ SU | x0 = y]

≥ p · Pr
D

[
(3 +X − 6 > 0) ∧ (−3 +X − 2/

√
d) > 0)

]
= p · Pr

[
N (4, 4) > 3 + 2/

√
d
]
≥ 65% (for d ≥ 200) .

4.2 New Attacks and Adversarial Training Schemes

We complement our theoretical results with empirical evaluations of the robustness trade-off on
MNIST and CIFAR-10. To this end, we first introduce new adversarial training schemes tailored to
the multi-perturbation risks defined in Equation (4.1), as well as a novel attack for the `1 norm.

Multi-perturbation adversarial training. We define the empirical adversarial risk as

R̂adv(f ;S) =
m∑
i=1

max
δ∈S

L(f(x(i) + δ), y(i)) ,

where L is the training loss and D is the training set. For a single perturbation type, R̂adv can be
minimized with adversarial training [159]: the maximal loss is approximated by an attack procedure
A(x), such that maxδ∈S L(f(x+ δ), y) ≈ L(f(A(x)), y).

For i ∈ [1, d], let Ai be an attack for the perturbation set Si. The two multi-attack robustness
metrics introduced in Equation (4.1) immediately yield the following natural adversarial training
strategies:

1. “Max” strategy: For each input x, we train on the strongest adversarial example from all
attacks, i.e., the max in R̂adv is replaced by L(f(Ak∗(x)), y), for k∗ = arg maxk L(f(Ak(x)), y).

2. “Avg” strategy: This strategy simultaneously trains on adversarial examples from all attacks.
That is, the max in R̂adv is replaced by 1

n

∑n
i=1 L(f(Ai(x), y)).

The sparse `1 descent attack (SLIDE). Adversarial training is contingent on a strong and
efficient attack. Training on weak attacks gives no robustness [255], while strong optimization

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 68

Input: Input x ∈ [0, 1]d, steps k, step-size γ, percentile q, `1 bound ε
Output: x̂ = x+ δ s.t. ‖δ‖1 ≤ ε

1 δ ← 0d
for 1 ≤ i ≤ k do

2 g ← ∇δL(θ, x+ δ, y)
3 e← sign(g)
4 for 1 ≤ j ≤ d do ej ← 0 if |gj | < Pq(abs(g)) end
5 δ ← δ + γ · e/‖e‖1
6 δ ← ΠSε1

(δ)
end

Algorithm 1: The Sparse `1 Descent Attack (SLIDE). Pq(abs(g)) denotes the qth per-
centile of abs(g) and ΠSε1

is the projection onto the `1 ball (see [64]).

attacks (e.g., [26, 39]) are prohibitively expensive. Projected Gradient Descent (PGD) [144, 159] is
a popular choice of attack that is both efficient and produces strong perturbations. To complement
our formal results, we want to train models on `1 perturbations. Yet, we show that the `1 version
of PGD is highly inefficient, and propose a better approach suitable for adversarial training.

PGD is a steepest descent algorithm [158]. In each iteration, the perturbation is updated in the
steepest descent direction arg max‖v‖≤1 v

Tg, where g is the gradient of the loss. For the `∞ norm,
the steepest descent direction is sign(g) [95], and for `2, it is g/‖g‖2. For the `1 norm, the steepest
descent direction is the unit vector e with ei∗ = sign(gi∗), for i∗ = arg maxi |gi|.

This yields an inefficient attack, as each iteration updates a single index of the perturbation δ.
We thus design a new attack with finer control over the sparsity of an update step. For q ∈ [0, 1],
let Pq(abs(g)) be the qth percentile of abs(g), where abs(g) = (|g1|, . . . , |gd|) We set ei = sign(gi) if
|gi| ≥ Pq(abs(g)) and 0 otherwise, and normalize e to unit `1 norm. For q � 1/d, we thus update
many indices of δ at once. We introduce another optimization to handle clipping, by ignoring
gradient components where the update step cannot make progress (i.e., where xi + δi ∈ {0, 1} and
gi points outside the domain). To project δ onto an `1 ball, we use an algorithm of Duchi et al.
[64]. Algorithm 1 describes our attack. It outperforms the steepest descent attack as well as a
recently proposed Frank-Wolfe algorithm for `1 attacks [129]. Our attack is competitive with the
more expensive EAD attack [39], as shown below.

Performance of the Sparse `1 Descent Attack. In Figure 4.2, we compare the performance
of our new Sparse `1 Descent Attack (SLIDE) for different choices of gradient sparsity. We also
compare to the standard PGD attack with the steepest-descent update rule, as well as a recent
attack proposed in [129] that adapts the Frank-Wolfe optimization algorithm for finding `1 bounded
adversarial examples. As we explained above, we expect our attack to outperform PGD as the
steepest-descent vector is too sparse in the `1 case, and we indeed observe a significant improvement
by choosing denser updates.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 69

10 50 100 200 500 1000

PGD steps (k)

4

5

6

7

L
o
ss

q=98%
q=99%
q=99.5%
steepest

20 50 100 200 500

PGD steps (k)

10

20

30

L
o
ss q=85%

q=90%
q=95%

q=99%
steepest

Figure 4.2: Performance of the Sparse `1 Descent Attack on MNIST (left) and CIFAR-10
(right) for different choices of descent directions. We run the attack for up to 1,000 steps and
plot the evolution of the cross-entropy loss, for an undefended model. We vary the sparsity of the
gradient updates (controlled by the parameter q), and compare to the standard PGD attack that
uses the steepest descent vector, as well as the Frank-Wolfe `1 attack from [129]. For appropriate q,
our attack vastly outperforms PGD and Frank-Wolfe.

The subpar performance of the Frank-Wolfe algorithm is also intriguing. We believe it is due to
the attack’s linearly decreasing step-size (the kth iteration has a step-size of O(1/k), see [129] for
details). While this choice is appropriate for optimizing convex functions, in the non-convex case
it overly emphasizes the first steps of the attack, which intuitively should increase the likelihood of
landing in a local minima.

4.3 Experiments

We use our new adversarial training schemes to measure the robustness trade-off on MNIST and
CIFAR-10.2 MNIST is an interesting case-study as distinct models achieve strong robustness to
different `p and spatial attacks[71, 222]. Despite the dataset’s simplicity, we show that no single
model achieves strong `∞, `1 and `2 robustness, and that new techniques are required to close this
gap.

Training and evaluation setup. We first use adversarial training to train models on a single
perturbation type. For MNIST, we use `1(ε = 10), `2(ε = 2) and `∞(ε = 0.3). For CIFAR-10
we use `∞(ε = 4

255) and `1(ε = 2000
255). We also train on rotation-translation attacks with ±3px

translations and ±30° rotations as in [71]. We denote these models Adv1, Adv2, Adv∞, and AdvRT.
We then use the “max” and “avg” strategies from Section 4.2 to train models Advmax and Advavg
against multiple perturbations. We train once on all `p perturbations, and once on both `∞ and RT
perturbations.

2Kang et al. [129] recently studied the transfer between `∞, `1 and `2 attacks for adversarially trained models on
ImageNet. They show that models trained on one type of perturbation are not robust to others, but they do not
attempt to train models against multiple attacks simultaneously.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 70

MNIST training. We use the CNN model from Madry et al. [159] and train for 10 epochs with
Adam and a learning rate of 10−3 reduced to 10−4 after 5 epochs (batch size of 100). To accelerate
convergence, we train against a weaker adversary in the first epoch (with 1/3 of the perturbation
budget). For training, we use PGD with 40 iterations for `∞ and 100 iterations for `1 and `2.
For rotation-translations, we use the attack from [71] that picks the worst of 10 random rotation-
translations.

CIFAR-10 training. We use the same wide ResNet model as [159]. We train for 80k steps of
gradient descent with batch size 128 (205 epochs). When using the “avg” strategy for wide ResNet
models, we had to halve the batch size to avoid overflowing the GPU’s memory. We accordingly
doubled the number of training steps and learning rate schedule. We use a learning rate of 0.1
decayed by a factor 10 after 40k and 60k steps, a momentum of 0.9, and weight decay of 0.0002.
Except for the RT attack, we use standard data augmentation with random padding, cropping and
horizontal flipping (see [71] for details). We extract 1,000 points from the CIFAR-10 test as a
validation set for early-stopping.

For training, we use PGD with 10 iterations for `∞, and 20 iterations for `1.3 For rotation-
translations, we also use the attack from [71] that trains on the worst of 10 randomly chosen rotation-
translations.

Evaluation setup. We evaluate robustness of all models using multiple attacks: (1) we use
gradient-based attacks for all `p norms, i.e., PGD [159] and our SLIDE attack with 100 steps and 40
restarts (20 restarts on CIFAR-10), as well as Carlini and Wagner’s `2 attack [26] (C&W), and an
`1 variant—EAD [39]; (2) to detect gradient-masking, we use decision-based attacks: the Boundary
Attack [21] for `2, the Pointwise Attack [222] for `1, and the Boundary Attack++ [37] for `∞; (3)
for spatial attacks, we use the optimal attack of [71] that enumerates all small rotations and trans-
lations. For unbounded attacks (C&W, EAD and decision-based attacks), we discard perturbations
outside the `p ball.

For each model, we report accuracy on 1000 test points for: (1) individual perturbation types;
(2) the union of these types, i.e., 1−Rmax

adv ; and (3) the average of all perturbation types, 1−Ravg
adv.

We briefly discuss the optimal error that can be achieved if there is no robustness trade-off. For
perturbation sets S1, . . . Sn, let R1, . . . ,Rn be the optimal risks achieved by distinct models. Then,
a single model can at best achieve risk Ri for each Si, i.e., OPT(Ravg

adv) = 1
n

∑n
i=1Ri. If the errors

are fully correlated, so that a maximal number of inputs admit no attack, we have OPT(Rmax
adv) =

max{R1, . . . ,Rn}. Our experiments show that these optimal error rates are not achieved.
3Our new attack `1 attack, described in Section 4.2, has a parameter q to controls the sparsity of the gradient

updates. When leaving this parameter constant during training, the model overfits and fails to achieve general
robustness. To resolve this issue, we sample q ∈ [80%, 99.5%] at random for each attack during training. We also
found that 10 iterations were insufficient to get a strong attack and thus increased the iteration count to 20.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 71

Table 4.1: Evaluation of MNIST models trained on `∞, `1 and `2 attacks (left) or `∞ and
rotation-translation (RT) attacks (right). Models Adv∞, Adv1, Adv2 and AdvRT are trained
on a single attack, while Advavg and Advmax are trained on multiple attacks using the “avg” and
“max” strategies. The columns show a model’s accuracy on individual perturbation types, on the
union of them (1−Rmax

adv), and the average accuracy across them (1−Ravg
adv). The best results are in

bold (at 95% confidence). Results in red indicate gradient-masking, see Table 4.3 for a breakdown
of all attacks.

Model Acc. `∞ `1 `2 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 12.4 8.5 0.0 7.0
Adv∞ 99.1 91.1 12.1 11.3 6.8 38.2
Adv1 98.9 0.0 78.5 50.6 0.0 43.0
Adv2 98.5 0.4 68.0 71.8 0.4 46.7
Advavg 97.3 76.7 53.9 58.3 49.9 63.0
Advmax 97.2 71.7 62.6 56.0 52.4 63.4

Model Acc. `∞ RT 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 0.0 0.0 0.0
Adv∞ 99.1 91.4 0.2 0.2 45.8
AdvRT 99.3 0.0 94.6 0.0 47.3
Advavg 99.2 88.2 86.4 82.9 87.3
Advmax 98.9 89.6 85.6 83.8 87.6

4.3.1 Results on MNIST

Results are in Table 4.1. The left table is for the union of `p attacks, and the right table is for the
union of `∞ and RT attacks. In both cases, the multi-perturbation training strategies “succeed”, in
that models Advavg and Advmax achieve higher multi-perturbation accuracy than any of the models
trained against a single perturbation type.

The results for `∞ and RT attacks are promising, although the best model Advmax only achieves
1−Rmax

adv = 83.8% and 1−Ravg
adv = 87.6%, which is far less than the optimal values, 1−OPT(Rmax

adv) =
min{91.4%, 94.6%} = 91.4% and 1−OPT(Ravg

adv) = (91.4% + 94.6%)/2 = 93%. Thus, these models
do exhibit some form of the robustness trade-off analyzed in Section 4.1.

The `p results are surprisingly mediocre and re-raise questions about whether MNIST can be
considered “solved” from a robustness perspective. Indeed, while training separate models to resist
`1, `2 or `∞ attacks works well, resisting all attacks simultaneously fails. This agrees with the
results of Schott et al. [222], whose models achieve either high `∞ or `2 robustness, but not both
simultaneously. We show that in our case, this lack of robustness is partly due to gradient masking.

4.3.2 Results on CIFAR-10

The left table in Table 4.2 considers the union of `∞ and `1 perturbations, while the right table
considers the union of `∞ and RT perturbations. As on MNIST, the models Advavg and Advmax

achieve better multi-perturbation robustness than any of the models trained on a single perturbation,
but fail to match the optimal error rates we could hope for. For `1 and `∞ attacks, we achieve 1−
Rmax

adv = 61.1% and 1−Ravg
adv = 64.1%, again significantly below the optimal values, 1−OPT(Rmax

adv) =
min{71.0%, 66.2%} = 66.2% and 1−OPT(Ravg

adv) = (71.0% + 66.2%)/2 = 68.6%. The results for `∞

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 72

Table 4.2: Evaluation of CIFAR-10 models trained against `∞ and `1 attacks (left) or `∞
and rotation-translation (RT) attacks (right). Models Adv∞, Adv1 and AdvRT are trained
against a single attack, while Advavg and Advmax are trained against two attacks using the “avg”
and “max” strategies. The columns show a model’s accuracy on individual perturbation types, on
the union of them (1 −Rmax

adv), and the average accuracy across them (1 −Ravg
adv). The best results

are in bold (at 95% confidence). A breakdown of all `1 attacks is in Table 4.4.

Model Acc. `∞ `1 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 0.0 0.0 0.0
Adv∞ 92.0 71.0 16.4 16.4 44.9
Adv1 90.8 53.4 66.2 53.1 60.0
Advavg 91.1 64.1 60.8 59.4 62.5
Advmax 91.2 65.7 62.5 61.1 64.1

Model Acc. `∞ RT 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 5.9 0.0 3.0
Adv∞ 92.0 71.0 8.9 8.7 40.0
AdvRT 94.9 0.0 82.5 0.0 41.3
Advavg 93.6 67.8 78.2 65.2 73.0
Advmax 93.1 69.6 75.2 65.7 72.4

Table 4.3: Breakdown of all attacks on MNIST models. For `∞, we use PGD and Boundary
Attack++ (BAPP) [37]. For `1, we use our Sparse `1 Descent Attack (SLIDE), EAD [39] and
Pointwise Attack (PA) [222]. For `2, we use PGD, C&W [26] and Boundary Attack (BA) [21].

`∞ `1 `2

Model Acc. PGD BAPP All `∞ SLIDE EAD PA All `1 PGD C&W BA All `2 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 13.0 0.0 13.0 18.8 72.1 12.4 11.0 10.4 31.0 8.5 0.0 7.0
Adv∞ 99.1 91.1 98.5 91.1 66.9 58.4 15.0 12.1 78.1 78.4 14.0 11.3 6.8 38.2
Adv1 98.9 0.0 43.5 0.0 78.6 81.0 91.6 78.5 53.0 52.0 69.7 50.6 0.0 43.0
Adv2 98.5 0.4 78.5 0.4 70.4 69.3 89.7 68.0 74.7 74.5 81.7 71.8 0.4 46.7
Advavg 97.3 76.7 98.0 76.7 66.3 62.4 68.6 53.9 77.7 72.3 64.6 58.3 49.9 63.0
Advmax 97.2 71.7 98.5 71.7 72.1 70.0 69.6 62.6 75.7 71.8 59.7 56.0 52.4 63.4

and RT attacks are qualitatively and quantitatively similar. 4

Models Advavg and Advmax achieve 100% training accuracy. Thus, multi-perturbation robust-
ness increases the adversarial generalization gap [220]. These models might be resorting to more
memorization because they fail to find features robust to both attacks.

Detailed results for each attack. Table 4.3 and Table 4.4 below give a more detailed breakdown
of each model’s accuracy against each `p attack we considered. For each model and attack, we
evaluate the attack on 1,000 test points and report the accuracy. For each individual perturbation
type (i.e., `∞, `1, `2), we further report the accuracy obtained by choosing the worst attack for each
input. Finally, we report the accuracy against the union of all attacks (1 − Rmax

adv) as well as the
average accuracy across perturbation types (1−Ravg

adv).
4An interesting open question is why the model Advavg trained on `∞ and RT attacks does not attain optimal

average robustness Ravg
adv. Indeed, on CIFAR-10, detecting the RT attack of [71] is easy, due to the black in-painted

pixels in a transformed image. The following “ensemble” model thus achieves optimal Ravg
adv (but not necessarily

optimal Rmax
adv): on input x̂, return AdvRT(x̂) if there are black in-painted pixels, otherwise return Adv∞(x̂). The

fact that model Advavg did not learn such a function might hint at some limitation of adversarial training.

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 73

Table 4.4: Breakdown of all attacks on CIFAR-10 models. For `∞, we use PGD. For `1, we
use our Sparse `1 descent attack (SLIDE), EAD [39] and Pointwise Attack (PA) [222].

`∞ `1

Model Acc. PGD All `∞ SLIDE EAD PA All `1 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 0.0 0.2 0.0 29.6 0.0 0.0 0.0
Adv∞ 92.0 71.0 71.0 19.4 17.6 52.7 16.4 16.4 44.9
Adv1 90.8 53.4 53.4 66.6 66.6 84.7 66.2 53.1 60.0
Advavg 91.1 64.1 64.1 61.1 61.5 81.7 60.8 59.4 62.5
Advmax 91.2 65.7 65.7 63.1 63.0 83.4 62.5 61.1 64.1

4.3.3 First-order Adversarial Training and Gradient Masking on MNIST

On MNIST, the model Adv∞ is not robust to `1 and `2 attacks. This is unsurprising as the model
was only trained on `∞ attacks. Yet, comparing the model’s accuracy against multiple types of
`1 and `2 attacks (see Table 4.3) reveals a more curious phenomenon: Adv∞ has high accuracy
against first-order `1 and `2 attacks such as PGD, but is broken by decision-free attacks. This is an
indication of gradient-masking [6, 194, 255].

This issue had been observed before [149, 222], but an explanation remained illusive, especially
since `∞ PGD does not appear to suffer from gradient masking (see [159]). We explain this phe-
nomenon by inspecting the learned features of model Adv∞, as in [159]. We find that the model’s
first layer learns threshold filters z = ReLU(α · (x − ε)) for α > 0. As most pixels in MNIST are
zero, most of the zi cannot be activated by an ε bounded `∞ attack. The `∞ PGD thus optimizes a
smooth (albeit flat) loss function. In contrast, `1 and `2 attacks can move a pixel xi = 0 to x̂i > ε

thus activating zi, but have no gradients to rely on (i.e, dzi/dxi = 0 for any xi ≤ ε). Figure 4.3
shows that the model’s loss resembles a step-function, for which first-order attacks such as PGD are
inadequate.

Note that training against first-order `1 or `2 attacks directly (i.e., models Adv1 and Adv2 in
Table 4.1), seems to yield genuine robustness to these perturbations. This is surprising in that,
because of gradient masking, model Adv∞ actually achieves lower training loss against first-order `1
and `2 attacks than models Adv1 and Adv2. That is, Adv1 and Adv2 converged to sub-optimal local
minima of their respective training objectives, yet these minima generalize much better to stronger
attacks.

The models Advavg and Advmax that are trained against `∞, `1 and `2 attacks also learn to use
thresholding to resist `∞ attacks while spuriously masking gradient for `1 and `2 attacks. This is
evidence that, unlike previously thought [259], training against a strong first-order attack (such as
PGD) can cause the model to minimize its training loss via gradient masking. To circumvent this
issue, alternatives to first-order adversarial training seem necessary. Potential (costly) approaches
include training on gradient-free attacks, or extending certified defenses [207, 271] to multiple per-
turbations. Certified defenses provide provable bounds that are much weaker than the robustness

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 74

PGD Attack
0

2
4

6
8

10

Po
in
tw
ise

At
ta
ck

0
2

4
6

8
10

Loss

0.2

0.4

0.6

PGD Attack
0

1

2

Bo
un
da
ry
At
ta
ck

0

1

2

Loss

0

1

2

3

4

Figure 4.3: Gradient masking in an `∞ adversarially trained model on MNIST, evaluated
against `1 attacks (left) and `2 attacks (right). The model is trained against an `∞ PGD
adversary with ε = 0.3. For a randomly chosen data point x, we compute an adversarial perturbation
δPGD using PGD and δGF using a gradient-free attack. The left plot is for `1 attacks with ε = 10
and the right plot is for `2 attacks with ε = 2. The plots display the loss on points of the form
x̂ := x + α · δPGD + β · δGF, for α, β ∈ [0, ε]. The loss surface behaves like a step-function, and
gradient-free attacks succeed in finding adversarial examples where first-order methods failed.

Table 4.5: Evaluation of affine attacks. For models trained with the “max” strategy, we evaluate
against attacks from a union SU of perturbation sets, and against an affine adversary that interpolates
between perturbations. Examples of affine attacks are in Figure 4.4.

Dataset Attacks acc. on SU acc. on Saffine

MNIST `∞ & RT 83.8 62.6
CIFAR-10 `∞ & RT 65.7 56.0
CIFAR-10 `∞ & `1 61.1 58.0

attained by adversarial training, and certifying multiple perturbation types is likely to exacerbate
this gap.

4.3.4 Affine Adversaries

Finally, we evaluate the affine attacks introduced in Section 4.1.5. These attacks take affine com-
binations of two perturbation types, and we apply them on the models Advmax (we omit the `p
case on MNIST due to gradient masking). To compound `∞ and `1 noise, we devise an attack
that updates both perturbations in alternation. To compound `∞ and RT attacks, we pick random
rotation-translations (with ±3βpx translations and ±30β° rotations), apply an `∞ attack with bud-
get (1 − β)ε to each, and retain the worst example. In Figure 4.4, we display examples of `1, `∞
and rotation-translation attacks on MNIST and CIFAR-10, as well as affine attacks that interpolate
between two attack types.

The results in Table 4.5 match the predictions of our formal analysis: (1) affine combinations

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 75

β=1.0 0.75 0.5 0.25 0.0

ℓ∞RT

β=1.0 0.75 0.5 0.25 0.0

ℓ∞RT

β=1.0 0.75 0.5 0.25 0.0

ℓ∞ℓ1

Figure 4.4: Adversarial examples for `∞, `1 and rotation-translation (RT) attacks, and
affine combinations thereof. The first column in each subplot shows clean images. The following
five images in each row linearly interpolate between two attack types, as described in Section 4.1.5.
Images marked in red are mis-classified by a model trained against both types of perturbations.
Note that there are examples for which combining a rotation-translation and `∞ attack is stronger
than either perturbation type individually.

of `p perturbations are no stronger than their union. This is expected given Claim 4.8 and prior
observations that neural networks are close to linear near the data [95, 215]; (2) combining of `∞
and RT attacks does yield a stronger attack, as shown in Theorem 4.9. This demonstrates that
robustness to a union of perturbations can still be insufficient to protect against more complex
combinations of perturbations.

4.4 Discussion and Open Problems

Despite recent success in defending ML models against some perturbation types [71, 159, 222],
extending these defenses to multiple perturbations unveils a clear robustness trade-off. This tension
may be rooted in its unconditional occurrence in natural and simple distributions, as we proved in
Section 4.1.

Our new adversarial training strategies fail to achieve competitive robustness to more than one
attack type, but narrow the gap towards multi-perturbation robustness. We note that the optimal
risks Rmax

adv and Ravg
adv that we achieve are very close. Thus, for most data points, the models are

either robust to all perturbation types or none of them. This hints that some points (sometimes
referred to as prototypical examples [30, 241]) are inherently easier to classify robustly, regardless of
the perturbation type.

We showed that first-order adversarial training for multiple `p attacks suffers from gradient
masking on MNIST. Achieving better robustness on this simple dataset is an open problem. Another
challenge is reducing the cost of our adversarial training strategies, which scale linearly in the number
of perturbation types. Breaking this linear dependency requires efficient techniques for finding

CHAPTER 4. LIMITATIONS OF DEFENSES: MULTIPLE PERTURBATION TYPES 76

perturbations in a union of sets, which might be hard for sets with near-empty intersection (e.g.,
`∞ and `1 balls). The cost of adversarial training has also be reduced by merging the inner loop
of a PGD attack and gradient updates of the model parameters [226, 285], but it is unclear how to
extend this approach to a union of perturbations (some of which are not optimized using PGD, e.g.,
rotation-translations).

Hendrycks and Dietterich [107], and Geirhos et al. [84] recently measured robustness of classifiers
to multiple common (i.e., non-adversarial) image corruptions (e.g., random image blurring). In that
setting, they also find that different classifiers achieve better robustness to some corruptions, and
that no single classifier achieves the highest accuracy under all forms. The interplay between multi-
perturbation robustness in the adversarial and common corruption case is worth further exploration.

Chapter 5

Limitations of Defenses: Excessive
Invariance

The work we presented in Chapter 4 shows that building a classifier that is robust against multiple
types of small perturbations is a remarkable challenge. As a result, all current defenses remain
inherently vulnerable to simple attacks.

In this chapter, we argue that this problem is not merely technical. That is, even if we did manage
to train models that are robust against all perturbations from, say, a union of `p balls, we would
still face major challenges towards achieving meaningful robustness. To motivate the discussion in
this chapter, consider the following seemingly benign, yet critically important question:

How large of a perturbation set should our models be made robust to?

Answering this question is challenging, since the perturbation types we have considered (e.g.,
small `p balls, or small rotations and translations) are only a crude approximation to the true visual
similarity in a given task. In this chapter, we show that optimizing a model’s robustness to such
perturbations is not only insufficient to resist general adversarial examples, but also potentially
harmful. If a model attains robustness to large enough perturbations, we find that it may become
excessively invariant to real semantics of the underlying task.

Excessive invariance of a model causes vulnerability to invariance adversarial examples [120].
These are perturbations that change the human-assigned label of an input but keep the model
prediction unchanged. For example, in Figure 5.1 an image of a digit ‘3’ is perturbed to be an image
of a ‘5’ by changing only 20 pixels; models that are excessively invariant do not change their decision
and incorrectly label both images as a ‘3’, despite the fact that the oracle label has changed.

In this chapter, we will distinguish such invariance-based adversarial examples from the tradi-
tional sensitivity-based adversarial examples we have considered so far (where a small perturbation
causes a change in the model’s output).

77

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 78

Oracle Decision-boundary“unrobust” decision boundary “robust” decision boundary

ϵϵ

Classified as: 5

ϵϵ

Classified as: 3

Excessively Sensitive Model Excessively Invariant Model

Figure 5.1: Decision boundaries near a real image of a digit ‘3’ and an invariance-based
adversarial example labeled as ‘5’. [Left]: Training a classifier without constraints may learn a
decision boundary unrobust to sensitivity-based adversarial examples. [Right]: Enforcing robustness
to norm-bounded perturbations introduces erroneous invariance (dashed regions in ε-spheres). We
display real data here, the misclassified ‘5’ is an image found by our attack which resides within a
typically reported ε-region around the displayed ‘3’ (in the `0 norm). This excessive invariance of the
robust model in task-relevant directions illustrates how robustness to sensitivity-based adversarial
examples can result in new model vulnerabilities.

We expose a fundamental tradeoff between sensitivity-based and invariance-based adversarial
examples. We show that due to a misalignment between formal robustness notions (e.g., `p balls)
and a task’s perceptual metric, current defenses against adversarial examples cannot prevent both
sensitivity-based and invariance-based attacks, and must trade-off robustness to each (see Figure 5.2).
Worse, we find that increasing robustness to sensitivity-based attacks decreases a model’s robust-
ness to invariance-based attacks. We introduce new algorithms to craft `p bounded invariance-based
adversarial examples, and illustrate the above tradeoff on MNIST.1 We show that state-of-the-art
robust models disagree with human labelers on many of our crafted invariance-based examples, and
that the disagreement rate is higher the more robust a model is. We find that even models robust
to very small perturbations (e.g., of `∞ norm below ε = 0.1) have higher vulnerability to invariance
attacks compared to undefended models.

We further break a provably-robust defense [286] with our attack. This model is certified to have
87% test-accuracy (with respect to the MNIST test-labels) under `∞ noise of radius ε = 0.4. That
is, for 87% of test inputs (x, y), the model is guaranteed to predict class y for any perturbed input
x̂ that satisfies ‖x− x̂‖∞ ≤ 0.4. Yet, on our invariance-based adversarial examples that satisfy
this norm-bound, the model only agrees with human labelers in 60% of the cases for an automated
attack, and 12% of the cases for manually-created examples—i.e., no better than chance. The reason
is that we can find perturbed inputs x̂ that humans no longer classify the same way as x.

Finally, we introduce a classification task where the tradeoff between sensitivity and invariance
can be studied rigorously. We show that excessive sensitivity and invariance are tied respectively

1While MNIST can be a poor choice for studying adversarial examples, we chose it because it is the only vision
task for which models have been made robust in non-negligible `p norm balls. The fundamental tradeoff described in
this chapter will affect other vision tasks once we can train strongly robust models on them.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 79

to the existence of generalizable non-robust features [115, 124, 281] and to robust features that are
predictive for standardized benchmarks, but not for the general vision tasks that these benchmarks
aim to capture. Our experiments on MNIST show that such overly-robust features exist. We
further argue formally and empirically that data augmentation may offer a solution to both excessive
sensitivity and invariance.

5.1 Norm-bounded Sensitivity and Invariance Attacks

We begin by defining a framework to formally describe two complementary failure modes of machine
learning models, namely (norm-bounded) adversarial examples that arise from excessive sensitivity
or invariance of a classifier.

We extend the definition of an adversarial example given in Definition 2.1 by incorporating an
explicit labeling oracle O : Rd → [C] ∪ {⊥} that maps any input in Rd to its true label, or to the
“garbage class” ⊥ for inputs x considered “un-labelable” (e.g., for a digit classification task, the
oracle O corresponds to human-labeling of any image as a digit or as the garbage class). Note that
for (x, y) ∼ D, we always have y = O(x).2

The goal of robust classification is then to learn a classifier f : Rd → [C] that agrees with
the oracle’s labels not only in expectation over the distribution D, but also on any rare or out-of-
distribution inputs to which the oracle assigns a class label—including adversarial examples obtained
by imperceptibly perturbing inputs sampled from D.

At its broadest, the definition of an adversarial example encompasses any adversarially induced
failure in a classifier [94]. That is, an adversarial example is any input x̂ created such that f(x̂) 6=
O(x̂). This definition has proven difficult to work with, due to its inherent reliance on the oracle
O. As a result, it has become customary to study a relaxation of this definition, which restricts
the adversary to applying a “small” perturbation to an input x sampled from the distribution D.
A common choice is to restrict the adversary to perturbations from some set S, e.g., a small `p
ball. This recovers the definition of an adversarial example we have used so far, which we will call
“sensitivity adversarial examples”:

Definition 5.1 (Sensitivity Adversarial Examples). Given a classifier f and a correctly classified
input (x, y) ∼ D (i.e., O(x) = f(x) = y), an ε-bounded sensitivity adversarial example is an input
x̂ ∈ Rd such that:

1. f(x̂) 6= f(x).

2. ‖x̂− x‖ ≤ ε.
2We view the support of D as a strict subset of all inputs in Rd to which the oracle assigns a label. That is, there

are inputs for which humans agree on a label, yet that have measure zero in the data distribution from which the
classifier’s train and test inputs are chosen. For example, the train-test data is often a sanitized and normalized subset
of natural inputs. Moreover, “unnatural” inputs such as adversarial examples might never arise in natural data.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 80

The assumption underlying this definition is that perturbations satisfying ‖x̂− x‖ ≤ ε preserve
the oracle’s labeling of the original input x, i.e., O(x̂) = O(x). If this assumption holds, then
Definition 5.1 is equivalent to Definition 2.1 that we have considered thus far. In this chapter, we
will primarily be interested in cases where this assumption might get violated.

A long line of work studies techniques to make classifiers robust to norm-bounded sensitivity
adversarial examples [95, 159]. The main objective of these works is to minimize a classifier’s
adversarial risk under ε-bounded perturbations:

Radv(f ; ε) := E
(x,y)∼D

[
max

‖delta‖≤ε
1{f(x+δ)6=y}

]
. (5.1)

Note that Radv(f ; ε) is syntactic sugar for the general form of adversarial risk in Definition 2.2 with
the perturbation set S = {δ : ‖δ‖ ≤ ε}.

We study a complementary failure mode to sensitivity adversarial examples, called invariance
adversarial examples [120]. These correspond to (bounded) perturbations that do not preserve an
input’s oracle-assigned label, yet preserve the model’s classification:

Definition 5.2 (Invariance Adversarial Examples). Given a classifier f and a correctly classified
input (x, y) ∼ D, an ε-bounded invariance adversarial example is an input x̂ ∈ Rd such that:

1. f(x̂) = f(x).

2. O(x̂) 6= O(x), and O(x̂) 6= ⊥.

3. ‖x̂− x‖ ≤ ε.

If the assumption on sensitivity adversarial examples in Definition 5.1 is met—i.e., all ε-bounded
perturbations preserve the label—then Definition 5.1 and Definition 5.2 correspond to well-separated
failure modes of a classifier (i.e., ε′-bounded invariance adversarial examples only exist for ε′ > ε).

Our main contribution is to reveal fundamental trade-offs between these two types of adversarial
examples, that arise from this assumption being violated. We demonstrate that state-of-the-art
robust classifiers do violate this assumption, and (sometimes certifiably) have low robust error
Radv(f ; ε) for a norm-bound ε that does not guarantee that the oracle’s label is preserved. We
show that these classifiers actually have high “true” robust error as measured by human labelers.

Remarks. Definition 5.2 is a conscious restriction on a definition of Jacobsen et al. [120], who
define an invariance adversarial example as an unbounded perturbation that changes the oracle’s
label while preserving a classifier’s output at an intermediate feature layer. As we solely consider
the model’s final classification, considering unbounded perturbations would allow for a “trivial”
attack: given an input x of class y, find any input of a different class that the model misclassifies as
y. (e.g., given an image of a digit 8, an unbounded invariance example could be any unperturbed
digit that the classifier happens to misclassify as an 8).

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 81

ϵ*
x̂

x̂

(a) (b) (c)

Figure 5.2: Illustration of distance-oracle misalignment. The input space is (ground-truth)
classified into the red solid region, and the white dotted region. (a) A point at distance ε∗ (under a
chosen norm) of the oracle decision boundary. (b) A model robust to perturbations of norm ε ≤ ε∗
(gray circle) is still overly sensitive and can have adversarial examples x̂. (c) A model robust to
perturbations of norm ε > ε∗ (gray circle) has invariance adversarial examples x̂.

Definition 5.2 presents the same difficulty as the original broad definition of adversarial examples:
a dependence on the oracle O. Automating the process of finding invariance adversarial examples
is thus challenging. In Section 5.3.2, we present some successful automated attacks, but show that
a human-in-the-loop process is more effective.

5.2 The Sensitivity and Invariance Tradeoff

In this section, we show that if the norm that is used to define “small” adversarial perturbations is
misaligned with the labeling oracle O, then the robust classification objective in Equation (5.1) is
insufficient for preventing both sensitivity-based and invariance-based adversarial examples under
that norm. That is, we show that optimizing a model to attain low robust error on perturbations
of norm ε cannot prevent both sensitivity and invariance adversarial examples.

We begin by formalizing our notion of norm-oracle misalignment. The definition applies to any
similarity metric over inputs, of which `p norms are a special case.

Definition 5.3 (Distance-Oracle Misalignment). Let dist : Rd × Rd → R be a distance measure
(e.g.,

∥∥x(1) − x(2)
∥∥). We say that dist is aligned with the oracle O if for any input x with O(x) = y,

and any inputs x(1), x(2) such that O(x(1)) = y, O(x(2)) 6= y, we have dist(x, x(1)) < dist(x, x(2)).
dist and O are misaligned if they are not aligned.

For natural images, `p norms (or other simple metrics) are clearly misaligned with our own
perceptual metric. A concrete example is in Figure 5.3. This simple fact has deep implications for
the suitability of the robust classification objective in Equation (5.1). For an input (x, y) ∼ D, we
define the size of the smallest class-changing perturbation as:

ε∗(x) := min {‖δ‖ : O(x+ δ) /∈ {y,⊥}} . (5.2)

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 82

Let x be an input where the considered distance function is not aligned with the oracle. Let
x(2) = x + δ be the closest input to x with a different class label, i.e., O(x(2)) = y′ 6= y and
‖δ‖ = ε∗(x). As the distance and oracle are misaligned, there exists an input x(1) = x + δ′ such
that ‖δ′‖ > ε∗(x) and O(x(1)) = y. So now, if we train a model to be robust (in the sense of
Equation (5.1)) to perturbations of norm bounded by ε ≤ ε∗(x), the model might misclassify x(1),
i.e., it is sensitive to non-semantic changes. Instead, if we make the classifier robust to perturbations
bounded by ε > ε∗(x), then x(2) becomes an invariance adversarial examples as the model will
classify it the same way as x. The two types of failure modes are visualized in Figure 5.2.

Lemma 5.4. Constructing an oracle-aligned distance function that satisfies Definition 5.3 is as hard
as constructing a function f so that f(x) = O(x), i.e., f perfectly solves the oracle’s classification
task.

The proof of this lemma is below; at a high level, observe that given a valid distance function
that satisfies Definition 5.3 we can construct a nearest neighbor classifier that perfectly matches the
oracle. Thus, in general we cannot hope to have such a distance function.

Proof. We first show that if we have a distance function dist that satisfies Definition 5.3, then the
classification task can be perfectly solved.

Let x be an input from class y so that O(x) = y. Let {x(i)} be any (possibly infinite) sequence
of inputs so that dist(x, x(i)) < dist(x, x(i+1)) but so that O(x(i)) = y for all x(i). Define lx =
limi→∞ dist(x, x(i)) as the distance to the furthest input from this class along the path x(i).

Assume that O is not degenerate and there exists at least one input z so that O(z) 6= y. If the
problem is degenerate then it is uninteresting: every function dist satisfies Definition 3.

Now let {z(i)} be any (possibly infinite) sequence of inputs so that dist(x, z(i)) > dist(x, z(i+1))
and so that O(z(i)) 6= y. Define lz = limi→∞ dist(x, z(i)) as the distance to the closest input along
z. But by Definition 5.3 we are guaranteed that lz > lx, otherwise there would exist an index I
such that dist(x, x(l)) ≥ dist(x, z(l)) but so that O(x) = O(x(l)) and O(x) 6= O(z(l)), contradicting
Definition 3. Therefore for any example x, all examples x(i) that share the same class label are
closer than any other input z that has a different class label.

From here it is easy to see that the task can be solved trivially by a 1-nearest neighbor classifier
using this function dist. Let S = {(α(i), y(i))}Ci=1 contain exactly one pair (z, y) for every class.
Given an arbitrary query point x, we can therefore compute the class label as arg min dist(x, α(i)),
which must be the correct label, because of the above argument: the closest example from any
(incorrect) class is different than the furthest example from the correct class, and so in particular,
the closest input from S must be the correct label.

For the reverse direction, assume we have a classifier f(x) that solves the task perfectly, i.e.,

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 83

(a) (b) (c)

Figure 5.3: An `p norm fails to measure semantic similarity in images. (a) original image
in the ImageNet validation set labeled as a goldfinch (top), hermit crab (bottom); (b) semantic
perturbation with a `2 perturbation of 19 (respectively 22) that replaces the object of interest with
a pineapple (top), strawberry (bottom). (c) random perturbation of the same `2 norm.

f(x) = O(x) for any x ∈ Rd. Then the following distance function is aligned with the oracle.

dist(x, x′) =

0 if f(x) = f(x′)

1 otherwise

5.3 Generating Invariance-based Adversarial Examples on
MNIST

We now empirically demonstrate and evaluate the trade-off between sensitivity-based and invariance-
based adversarial examples. We propose an algorithm for generating invariance adversarial examples,
and show that robustified models are disparately more vulnerable to these attacks compared to
standard models. In particular, we break both adversarially-trained and certifiably-robust models
on MNIST by generating invariance adversarial examples—within the models’ (possibly certified)
norm bound—to which the models’ assign different labels than an ensemble of humans.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 84

GenInv (x, y,D, T)
S ← {x′ : (x′, y′) ∈ D, y′ 6= y}
D∗ ← {t(x′) : t ∈ T , x′ ∈ S}
x̂← arg minx′∈D∗‖x′ − x‖
return x̂

Algorithm 2: Meta-algorithm for finding invariance-based adversarial examples. For
an input x, we find an input x̂ of a different class in the dataset D, that is closest to x under
some set of semantics-preserving transformations. T .

Why MNIST? We elect to study MNIST, the only dataset for which strong robustness to various
`p bounded perturbations is attainable with current techniques [159, 222]. The dataset’s simplicity
is what initially prompted the study of simple `p bounded perturbations [95]. Increasing MNIST
models’ robustness to such perturbations has since become a standard benchmark [137, 159, 207,
222]. Due to the existence of models with high robustness to various `p bounded attacks, robust
classification on MNIST is considered close to solved [222].

We argue that, contrary to popular belief, MNIST is far from being solved. We show why
optimizing for robustness to `p bounded adversaries is not only insufficient, but actively harms the
performance of the classifier against alternative invariance-based attacks.

In Section 5.3.4, we show that complex vision tasks (e.g., ImageNet) are also affected by the
fundamental tradeoffs we describe. These tradeoffs are simply not apparent yet, because of our
inability to train models with non-negligible robustness to any attacks on these tasks.

5.3.1 Generating Model-agnostic Invariance-based Adversarial Examples

We propose a model-agnostic algorithm for crafting invariance adversarial examples. Our attack
generates minimally perturbed invariance adversarial examples that cause humans to change their
classification.We then evaluate these examples against multiple models. The rationale for this ap-
proach is mainly that obtaining human labels is expensive, which encourages the use of a single
attack for all models.

The high-level algorithm we use is in Algorithm 2 and described below. It is simple, albeit
tailored to datasets where comparing images in pixel space is meaningful, like MNIST.3

Given an input x, the attack’s goal is to find the smallest class-changing perturbation x̂ = x+ δ

(c.f. Equation (5.2)) such that O(x̂) 6= O(x). Typically, x̂ is not a part of the dataset. We
thus approximate x̂ via semantics-preserving transformations of other inputs. That is, for the set
S of inputs of a different class than x, we apply transformations T (e.g., small image rotations,

3Kaushik et al. [131] consider a similar problem for NLP tasks. They ask human labelers to produce
“counterfactually-augmented data” by introducing a minimal number of changes to a text document so as to change
the document’s semantics.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 85

(a) (b) (c) (d) (e) (f-h)

Figure 5.4: Process for generating `0 invariant adversarial examples. From left to right:
(a) the original image of an 8; (b) the nearest training image (labeled as 3), before alignment;
(c) the nearest training image (still labeled as 3), after alignment; (d) the δ perturbation between
the original and aligned training example; (e) spectral clustering of the perturbation δ; and (f-h)
candidate invariance adversarial examples, selected by applying subsets of clusters of δ to the original
image. (f) is a failed attempt at an invariance adversarial example. (g) is successful, but introduces
a larger perturbation than necessary (adding pixels to the bottom of the 3). (h) is successful and
minimally perturbed.

translations) that are known a-priori to preserve input labels. We then pick the transformed input
that is closest to our target point under the considered `p metric. Below, we describe instantiations
of this algorithm for the `0 and `∞ norms. Figure 5.4 visualizes the sub-steps for the `0 attack,
including an extra post-processing that further reduces the perturbation size.

Measuring attack success. We refer to an invariance adversarial example as successful if it causes
a change in the oracle’s label, i.e., O(x̂) 6= O(x). This is a model-agnostic version of Definition 5.2.
In practice, we simulate the oracle by asking an ensemble of humans to label the point x̂; if more
than some fraction of them agree on the label (throughout this section, 70%) and that label is
different from the original, the attack is successful. Note that success or failure is independent of
any machine learning model.

Generating `0 invariant adversarial examples. Assume we are given a training set D consist-
ing of labeled example pairs (x, y). As input our algorithm accepts an example x with oracle label
O(x) = y. Image x with label y = 8 is given in Figure 5.4 (a).

Define S = {x′ : (x′, y′) ∈ D,x′ 6= y}, the set of training examples with a different label. Now we
define T to be the set of transformations that we allow: rotations by up to 20 degrees, horizontal
or vertical shifts by up to 6 pixels (out of 28), shears by up to 20%, and re-sizing by up to 50%.

We generate a new augmented training set D∗ = {t(x′) : t ∈ T , x′ ∈ S}. By assumption, each of
these examples is labeled correctly by the oracle. In our experiments, we verify the validity of this
assumption through a human study and omit any candidate adversarial example that violates this
assumption. Finally, we search for

x̂ = arg min
x̂∈D∗

‖x̂− x‖0.

By construction, we know that x and x̂ are similar in pixel space but have a different label. Figure 5.4
(b-c) show this step of the process. Next, we introduce a number of refinements to make x̂ be “more

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 86

similar” to x. This reduces the `0 distortion introduced to create an invariance-based adversarial
example—compared to directly returning x̂ as the adversarial example.

First, we define δ = |x − x̂| > 1/2 where the absolute value and comparison operator are taken
element-wise. Intuitively, δ represents the pixels that substantially change between x̂ and x. We
choose 1/2 as an arbitrary threshold representing how much a pixel changes before we consider the
change “important”. This step is shown in Figure 5.4 (d). Along with δ containing the useful changes
that are responsible for changing the oracle class label of x, it also contains irrelevant changes that
are superficial and do not contribute to changing the oracle class label. For example, in Figure 5.4
(d) notice that the green cluster is the only semantically important change; both the red and blue
changes are not necessary.

To identify and remove the superficial changes, we perform spectral clustering on δ. We compute
δ(i) by enumerating all possible subsets of clusters of pixel regions. This gives us many possible
potential adversarial examples x̂(i) = x + δ(i). Notice these are only potential because we may not
actually have applied the necessary change that actually modifies the class label.

We show three of the eight possible candidates in Figure 5.4. In order to alleviate the need for
human inspection of each candidate x̂(i) to determine which of these potential adversarial examples
is actually misclassified, we follow an approach from Defense-GAN [219] and the Robust Manifold
Defense [113]: we take the generator from a GAN and use it to assign a likelihood score to the
image. We make one small refinement, and use an AC-GAN [172] and compute the class-conditional
likelihood of this image occurring. This process reduces `0 distortion by 50% on average.

As a small refinement, we find that initially filtering D by removing the 20% least-canonical
examples makes the attack succeed more often.

Generating `∞ invariant adversarial examples. Our approach for generating `∞ invariant
examples follows similar ideas as for the `0 case, but is conceptually simpler as the perturbation
budget can be applied independently for each pixel (our `∞ attack is however less effective than the
`0 one, so further optimizations may prove useful).

We build an augmented training set D∗ as in the `0 case. Instead of looking for the closest
nearest neighbor for some example x with label O(x) = y, we restrict our search to examples x̂ ∈ D∗

with specific target labels y∗, which we’ve empirically found to produce more convincing examples
(e.g., we always match digits representing a 1, with a target digit representing either a 7 or a 4).
We then simply apply an `∞ bounded perturbation to x by interpolating with x̂, so as to minimize
the distance between x and the chosen target example x̂.

5.3.2 Evaluation

Attack analysis. We generate 100 invariance adversarial examples on inputs randomly drawn
from the MNIST test set, for both the `0 and `∞ norms. Our attack is slow, with the alignment

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 87

Table 5.1: Success rate of invariance adversarial examples in causing humans to switch
their classification.

Attack Type Success Rate
Clean Images 0%
`0 Attack 55%
`∞, ε = 0.3 Attack 21%
`∞, ε = 0.3 Attack (manual) 26%
`∞, ε = 0.4 Attack 37%
`∞, ε = 0.4 Attack (manual) 88%

Figure 5.5: Invariance-based adversarial examples on MNIST. Top to bottom: original
images and our `0, `∞ at ε = 0.3 and `∞ at ε = 0.4 invariance adversarial examples. (left) successful
attacks; (right) failed attack attempts.

process taking (amortized) minutes per example. We performed no optimizations of this process and
expect it could be improved. The mean `0 distortion of successful examples is 25.9 (with a median
of 25). The `∞ attack always uses the full budget of either ε = 0.3 or ε = 0.4 and runs in a similar
amount of time.

Human study. We conducted a human study to evaluate whether our invariance adversarial
examples are indeed successful, i.e., whether humans agree that the label has been changed. We
also hand-crafted 50 invariance adversarial examples for the `0 and `∞ norm. The process was quite
simple: we built an image editor that lets us change images at a pixel level under an `p constraint.
One author then modified 50 random test examples in the way that they perceived as changing
the underlying class. We presented all these invariance examples to 40 human evaluators. Each
evaluator classified 100 digits, half of which were unmodified MNIST digits, and the other half were
sampled randomly from our `0 and `∞ invariance adversarial examples.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 88

Table 5.2: Agreement between models and humans on invariance adversarial examples.
Shows model accuracy with respect to the oracle human labelers on the subset of examples where
the human-obtained oracle label is different from the test label. Models which are more robust
to perturbation adversarial examples (such as those trained with adversarial training) tend to agree
with humans less often on invariance-based adversarial examples. Values denoted with an asterisks
∗ violate the perturbation threat model of the defense and should not be taken to be attacks. When
the model is wrong, it failed to classify the input as the new oracle label.

`∞ PGD `2 PGD
Model:1 Undefended `0 Sparse Binary-ABS ABS (ε = 0.3) (ε = 2)
Clean 99% 99% 99% 99% 99% 99%
`0 80% 38% 47% 58% 56%∗ 27%∗
`∞, ε = 0.3 33% 19%∗ 0% 14% 0% 5%∗
`∞, ε = 0.4 51% 27%∗ 8% 18% 16%∗ 19%∗

1 `0 Sparse: [9]; ABS and Binary-ABS: [222]; `∞ PGD and `2 PGD: [159]

Results. Of 100 clean (unmodified) test images, 98 are labeled identically by all human evaluators.
The other 2 images were labeled identically by over 90% of evaluators.

Our `0 attack is highly effective: For 55 of the 100 examples at least 70% of human evaluators
labeled it the same way, with a different label than the original test label. Humans only agreed with
the original test label (with the same 70% threshold) on 34 of the images, while they did not form
a consensus on 18 examples. The simpler `∞ attack is less effective: with a distortion of 0.3 the
oracle label changed 21% of the time and with 0.4 the oracle label changed 37% of the time. The
manually created `∞ examples with distortion of 0.4 were highly effective however: for 88% of the
examples, at least 70% assigned the same label (different than the test set label). We summarize
results in Table 5.1. In Figure 5.5 we show sample invariance adversarial examples.

To simplify the analysis below, we split our generated invariance adversarial examples into two
sets: the successes and the failures, as determined by whether the plurality decision by humans was
different than or equal to the original label. We only evaluate models on those invariance adversarial
examples that caused the humans to switch their classification.

Model evaluation. Given oracle ground-truth labels for each of the images (as decided by hu-
mans), we report how often models agree with the human-assigned label. Table 5.2 summarizes
this analysis. For the invariance adversarial examples, we report model accuracy only on success-
ful attacks (i.e., those where the human oracle label changed between the original image and the
modified image).4 For these same models, Table 5.3 reports the “standard” robust accuracy for
sensitivity-based adversarial examples, i.e., in the sense of Equation (5.1).

The models which empirically achieve the highest robustness against `0 perturbations (in the
4It may seem counter-intuitive that our `∞ attack with ε = 0.3 appears stronger than the one with ε = 0.4.

Yet, given two successful invariance examples (i.e., that both change the human-assigned label), the one with lower
distortion is expected to change a model’s output less often, and is thus a stronger invariance attack.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 89

Table 5.3: Model accuracy on sensitivity-based adversarial examples. Shows robust model
accuracy with respect to the original MNIST labels under different threat models. To measure `0
robustness, we use the PointwiseAttack of [222] repeated 10 times, with ε = 25. For `∞ robustness,
we use PGD with 100 iterations for ε = 0.3 and ε = 0.4. For the ABS and Binary-ABS models, we
report the number from [222], for PGD combined with stochastic gradient estimation.

`∞ PGD `2 PGD
Model: Undefended `0 Sparse Binary-ABS ABS (ε = 0.3) (ε = 2)
`0 Attack (ε = 25) 0% 45% 63% 43% 0% 40%
`∞ Attack (ε = 0.3) 0% 8% 77% 8% 92% 1%
`∞ Attack (ε = 0.4) 0% 0% 60% 0% 7% 0%

sense of Equation (5.1)) are the `0 Sparse classifier of Bafna et al. [9], the Binary-ABS model
of Schott et al. [222], and the `2 PGD adversarially trained model (see Table 5.3 for a comparison of
the robustness of these models). Thus, these are the models that are most invariant to perturbations
of large `0 norm. We find that these are the models that achieve the lowest accuracy—as measured
by the human labelers—on our invariance examples. Moreover, all robust models perform much
worse than an undefended ResNet-18 model on our invariance attacks. This includes models such
as the `∞ PGD adversarially trained model, which do not explicitly aim at worst-case robustness
against `0 noise. Thus, we find that models that were designed to reduce excessive sensitivity to
certain non-semantic features, become excessively invariant to other features that are semantically
meaningful.

Similarly, we find that models designed for `∞ robustness (Binary-ABS and `∞ PGD) also fare
the worst on our `∞ invariance adversarial examples. Overall, all robust models do worse than the
undefended baseline. The results are consistent for attacks with ε = 0.3 and with ε = 0.4, the latter
being more successful in changing human labels.

Note that the Binary-ABS defense of [222] boasts 60% (empirical) robust accuracy on `∞ attacks
with ε = 0.4 (see [222]). Yet, on our our invariance examples that satisfy this perturbation bound,
the model actually disagrees with the human labelers 92% of the time, and thus achieves only 8%
true accuracy on these examples. Below, we make a similar observation for a certified defense.

5.3.3 Trading Perturbation-robustness for Invariance-robustness

To better understand how robustness to sensitivity-based adversarial examples influences robustness
to invariance attacks, we evaluate a range of adversarially-trained models on our invariance examples.

Setup. We trained `∞ PGD models with ε ∈ [0, 0.4] and `1 PGD models (as a proxy for `0
robustness) with ε ∈ [0, 15].

We use the same architecture as [159]. We train each model for 10 epochs with Adam and
a learning rate of 10−3 reduced to 10−4 after 5 epochs (with a batch size of 100). To accelerate

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 90

Table 5.4: Robust accuracy as a function of perturbation size during training. Models
are trained against attacks of increasing magnitude. The models trained on `∞ attacks (left) are
evaluated against `∞ PGD with ε ∈ {0.3, 0.4}. The models trained on `1 attacks (right) are evaluated
against the `0 Pointwise attack [222]. Accuracy is measured with respect to the original MNIST
label.

ε for `∞ PGD training
Attack 0.1 0.2 0.3 0.4
PGD ε = 0.3 0% 6% 92% 93%
PGD ε = 0.4 0% 0% 7% 90%

ε for `1 PGD training
Attack 5 10 15
`0 PointwiseAttack (ε = 25) 41% 59% 65%

convergence, we train against a weaker adversary in the first epoch (with 1/3 of the perturbation
budget). For training, we use PGD with 40 iterations for `∞ and 100 iterations for `1. For `∞ PGD,
we choose a step-size of 2.5 · ε/k, where k is the number of attack iterations. For the models trained
with `1 PGD, we use the Sparse `1 Descent Attack of Tramèr and Boneh [250], with a sparsity
fraction of 99%.

Results. We first verify, in Table 5.4 that training against larger perturbations results in a mono-
tonic increase in adversarial robustness, in the sense of Equation (5.1).

We then evaluate these models against respectively the `∞ and `0 invariance examples. Figure 5.6
shows that robustness to larger perturbations leads to higher vulnerability to invariance-based ex-
amples.

Interestingly, while sensitivity-based robustness does not generalize beyond the norm-bound on
which a model is trained (e.g., a model trained on PGD with ε = 0.3 achieves very little robustness
to PGD with ε = 0.4 [159]), excessive invariance does generalize (e.g., a model trained on PGD
with ε = 0.2 is more vulnerable to our invariance attacks with ε ≥ 0.3 compared to an undefended
model).

Breaking certified defenses. Our invariance attacks even constitute a break of some certified
defenses. For example, Zhang et al. [286] develop a defense which proves that the accuracy on the
test set is at least 87% under `∞ perturbations of size ε = 0.4. When we run their pre-trained model
on all 100 of our ε = 0.4 invariance adversarial examples (i.e., not just the successful ones) we find
it has a 96% “accuracy” (i.e., it matches the original test label 96% of the time). However, when we
look at the agreement between this model’s predictions with the new labels assigned by the human
evaluators, the model’s accuracy is just 63%.

Thus, while the proof in the paper is mathematically correct it does not actually deliver 87%
robust accuracy under `∞ attacks with ε = 0.4: humans change their classification for many of these
perturbations. Worse, for the 50 adversarial examples we crafted by hand, the model disagrees with
the human ensemble 88% of the time: it has just 12% accuracy.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 91

0.0 0.1 0.2 0.3 0.4
 for -PGD training

0.0
0.2
0.4
0.6
0.8

Or
ac

le
 A

gr
ee

m
en

t
 attack (0.3)
 attack (0.4)

0 5 10 15
 for 1-PGD training

0 attack

Figure 5.6: Higher noise-robustness leads to higher vulnerability to invariance attacks.
(left) For models trained with `∞ PGD, a higher bound ε ∈ [0, 0.4] implies lower accuracy on `∞
bounded invariance examples. (right) Models trained with `1 PGD evaluated on the `0 invariance
attack.

5.3.4 Natural Images

While our experiments are on MNIST, similar phenomena may arise in other vision tasks. Figure 5.3
shows two perturbations of ImageNet images: the rightmost perturbation is imperceptible and thus
classifiers should be robust to it. Conversely, the middle image was semantically changed, and
classifiers should be sensitive to such changes. Yet, the `2 norm of both perturbations is the same.
Hence, enforcing robustness to `2 noise of some fixed size ε will necessarily result in a classifier that is
either sensitive to the changes on the right, or invariant to the changes in the middle image. Such a
phenomenon will necessarily arise for any image dataset that contains small objects, as perturbations
of small `2 magnitude will be sufficient to occlude the object, thereby changing the image semantics.

This distance-oracle misalignment extends beyond the `2 norm. For instance, Co et al. [51] show
that a perturbation of size 16/255 in `∞ can suffice to give an image of a cat the appearance of
a shower curtain print, which are both valid ImageNet classes. Yet, a random perturbation of the
same magnitude is semantically meaningless.

On CIFAR-10, some recent defenses are possibly already overly invariant. For example, Shaeiri
et al. [224] and Panda et al. [190] aim to train models that are robust to `∞ perturbations of size
ε = 32/255. Yet, Tsipras et al. [259] show that perturbations of that magnitude can be semantically
meaningful and can be used to effectively interpolate between CIFAR-10 classes. The approach taken
by Tsipras et al. [259] to create these perturbations, which is based on a model with robustness to
very small `∞ noise, may point towards an efficient way of automating the generation of invariance
attacks for tasks beyond MNIST. The work of Sharif et al. [229] also shows that “small” `∞ noise
(of magnitude 25/255) can reliably fool human labelers on CIFAR-10.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 92

5.4 The Overly-robust Features Model

The experiments in Section 5.3 show that models can be robust to perturbations large enough to
change an input’s semantics. Taking a step back, it is not obvious why training such classifiers is
possible, i.e., why does excessive invariance not harm regular accuracy. To understand the learning
dynamics of these overly-robust models, we ask two questions:

1. Can an overly-robust model fit the training data?

2. Can such a model generalize (robustly) to test data?

5.4.1 Formal Model and Analysis

For simplicity, we assume that for every point (x, y) ∼ D, the closest point x̂ (under the chosen
norm) for which Oxx̂) 6= y is at a constant distance ε∗. We train a model f to have low robust error
(as in Equation (5.1)) for perturbations of size ε > ε∗. This model is thus overly-robust.

We first ask under what conditions f may have low robust training error. A necessary condition is
that there do not exist training points (x(i), y(i)), (x(j), y(j)) such that y(i) 6= y(j) and

∥∥x(i) − x(j)
∥∥ ≤

ε. As ε is larger than the inter-class distance, the ability to fit an overly robust model thus relies on
the training data not being fully representative of the space to which the oracle assigns labels. This
seems to be the case in MNIST: as the dataset consists of centered, straightened and binarized digits,
even an imaginary infinite-sized dataset might not contain our invariance adversarial examples.

The fact that excessive robustness generalizes (as provably evidenced by the model of Zhang
et al. [286]) points to a deeper issue: there must exist overly-robust and predictive features in the
data—that are not aligned with human perception. This mirrors the observations of [115], who
show that excessive sensitivity is caused by non-robust yet predictive features. On MNIST, our
experiments confirm the existence of overly-robust generalizable features.

We formalize these observations using a simple classification task inspired by [259]. We consider
a binary task where inputs x ∈ Rd+2 are sampled from a distribution D∗k with parameter k:

z
u.a.r∼ {−1, 1}, x1 = z/2

x2 =

+z w.p. 1+1/k
2

−z w.p. 1−1/k
2

, x3, . . . , xd+2
i.i.d∼ N (z√

d
, k) .

Here N (µ, σ2) is a normal distribution and k > 1 is a constant chosen so that only feature x1 is
strongly predictive of the latent variable z (e.g., k = 100 so that x2, . . . , xd+2 are almost uncorrelated
with z). The oracle is defined as O(x) = sign(x1), i.e., feature x1 fully defines the oracle’s class
label, and other features are nearly uncorrelated with it. Note that the oracle’s labels are robust
under any `∞ noise with norm strictly below ε = 1/2.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 93

We model the collection of “sanitized” and labeled datasets from a data distribution as follows:
the semantic features (i.e., x1) are preserved, while “noise” features have their variance reduced (e.g.,
because non-standard inputs are removed). Sanitization thus enhances “spurious correlations” [115,
124] between non-predictive features and class labels.5 We further assume that the data labeling
process introduces some small label noise.6 Specifically, the labeled data distribution D on which
we train and evaluate classifiers is obtained by sampling x from a sanitized distribution D∗1+α (for a
small constant α > 0) where features x2, . . . , xd+2 are strongly correlated with the oracle label. The
label y is set to the correct oracle label with high probability 1− β:

x ∼ D∗1+α, y =

+O(x) w.p. 1− β

−O(x) w.p. β
.

The consequences of this data sanitization are two-fold:

1. A standard classifier (that maximizes accuracy on D) agrees with the oracle with probability
at least 1− β, but is vulnerable to `∞ perturbations of size ε = O(d−1/2).

2. There is an overly-robust model that only uses feature x2 and has robust accuracy 1−α/2 on
D for `∞ noise of size ε = 0.99. This classifier is vulnerable to invariance attacks as the oracle
is not robust to such perturbations.

A standard classifier is vulnerable to adversarial examples. We first show that this saniti-
zation introduces spurious weakly robust features. Standard models trained on D are thus vulnerable
to sensitivity-based adversarial examples.

Lemma 5.5. Let f(x) be the Bayes optimal classifier on D. Then f agrees with the oracle O with
probability at least 1 − β over D but with 0% probability against an `∞ adversary bounded by some
ε = O(d−1/2).

Proof. The first part of the lemma, namely that f agrees with the oracle O with probability at
least 1 − β follows from the fact that for (x, y) ∼ D, sign(x1) = y with probability 1 − β, and
O(x) = sign(x1). So a classifier that only relies on feature x1 achieves 1− δ accuracy. To show that
the Bayes optimal classifier for D has adversarial examples, note that this classifier is of the form

f(x) = sign(wTx+ C)

= sign(w1 · x1 + w2 · x2 +
d+2∑
i=3

wi · xi + C) ,

5In digit classification for example, the number of pixels above 1/2 is a feature that is presumably very weakly
correlated with the class 8. In the MNIST dataset however, this feature is fairly predictive of the class 8 and robust
to `∞ noise of size ε = 0.4.

6This technicality avoids that classifiers on D can trivially learn the oracle labeling function. Alternatively, we
could define feature x1 so that is is hard to learn for certain classes of classifiers.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 94

where w1, w2, C are constants, and wi = O(1/
√
d) for i ≥ 3. Thus, a perturbation of size O(1/

√
d)

applied to features x3, . . . , xd+2 results in a change of size O(1) in wTx + C, which can be made
large enough to change the output of f with arbitrarily large probability. As perturbations of size
O(1/

√
d) cannot change the oracle’s label, they can reduce the agreement between the classifier and

oracle to 0%.

An overly-robust model is vulnerable to invariance attacks. We further show that there
exists an overly-robust classifier on D that is vulnerable to invariance adversarial examples:

Lemma 5.6. Let f(x) = sign(x2). This classifier has accuracy above 1− α/2 on D, even against
an `∞ adversary bounded by ε = 0.99. Under such large perturbations, f agrees with the oracle with
probability 0%.

Proof. The robust accuracy of f follows from the fact that f(x) cannot be changed by any per-
turbation of `∞ norm strictly below 1, and that for (x, y) ∼ D, we have x2 = y with probability
1+1/(1+α)

2 ≥ 1 − α/2. For any (x, y) ∼ D, note that a perturbation of `∞ norm above 1/2 can
always flip the oracle’s label. So we can always find a perturbation δ such that ‖δ‖∞ ≤ 0.99 and
f(x+ δ) 6= O(x+ δ).

The role of data augmentation. This simple task suggests a natural way to prevent the training
of overly robust models. If prior knowledge about the task suggests that classification should be
invariant to features x2 . . . , xd+2, then enforcing these invariances would prevent a model from being
robust to excessively large perturbations.

A standard way to enforce invariances is via data augmentation. In the above binary task,
augmenting the training data by randomizing over features x2, . . . , xd+2 would force the model to
rely on the only truly predictive feature, x1.

5.4.2 Experiments

We experimented with aggressive data-augmentation on MNIST. For values of ε ∈ [0, 0.4], we train
models with an adversary that rotates and translates inputs by a small amount and then adds
ε-bounded `∞ noise. This attacker mirrors the process we use to generate invariance adversarial
examples in Section 5.3. Thus, we expect it to be hard to achieve robustness to attacks with large ε on
this dataset, as this requires the model to correctly classify inputs that humans consider mislabeled.

Setup. For ε ∈ {0, 0.1, 0.2, 0.3, 0.4}, we train a model against an attack that first rotates and
translates an input (using the default parameters from [71]) and then adds noise of `∞ norm bounded
by ε to the transformed input For training, we sample 10 spatial transformations at random for each
input, apply 40 steps of `∞ PGD to each transformed input, and retain the strongest adversarial

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 95

0.0 0.2 0.4
 for -PGD training

0.6

0.8

Ro
bu

st
 A

cc
ur

ac
y

Figure 5.7: Robust accuracy against an affine adversary. Shows the accuracy of models trained
and evaluated on an adversary combining a small spatial data augmentation (rotation + translation)
with an `∞ perturbation bounded by ε.

example. At test time, we enumerate all possible spatial transformations for each input, and apply
100 steps of PGD to each.

When training against an adversary with ε ≥ 0.25, a warm-start phase is required to ensure
training converges. That is, we first trained a model against an ε = 0.2 adversary, and then
successively increases ε by 0.05 every 5 epochs.

Results. Figure 5.7 confirms our intuition: as ε grows, it becomes harder to learn a model that
is invariant to both spatial data augmentation and `∞ noise. We further find that the models
trained with data augmentation agree more often with human labelers on our invariance attacks
(see Figure 5.8). Yet, even with data augmentation, models trained against large `∞ perturbations
still perform worse than an undefended model. This simple experiment thus demonstrates that
while data-augmentation (over truly invariant features) can help in detecting or preventing excessive
invariance to semantic features, even though it is not currently sufficient for training models that
resist both sensitivity-based and invariance-based attacks.

5.5 Discussion

Our results show that solely focusing on robustness to sensitivity-based attacks is insufficient, as
mis-specified bounds can cause vulnerability to invariance-based attacks.

On `p norm evaluations. Our invariance attacks are able to find points within the `p ball in
which state-of-the-art classifiers are (provably) robust. This highlights the need for a more careful
selection of perturbation bounds when measuring robustness to adversarial examples. At the same

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 96

0.0 0.1 0.2 0.3 0.4
 for -PGD training

0.0

0.2

0.4

0.6

Or
ac

le
 A

gr
ee

m
en

t with augm.
w.o. augm.

Figure 5.8: Model-human agreement on successful invariance adversarial examples. The
invariance examples are of `∞ norm bounded by 0.4. Models trained with data augmentation agree
more often with humans, and are thus more sensitive to semantically-meaningful changes.

time, Figure 5.6 shows that even promoting robustness within conservative bounds causes excessive
invariance. The tradeoff explored in Section 5.2 suggests that aiming for robustness against `p
bounded attacks may be inherently futile for making models robust to arbitrary adversarial examples.

Trading sensitivity and invariance. We show that models that are robust to small perturba-
tions make excessively invariant decisions and are thus vulnerable to other attacks.

Interestingly, Engstrom et al. [70] show an opposite effect for models’ internal representations.
Denoting the logit layer of a model as z(x), they show that for robust models it is hard to find
inputs x, x̂ such that O(x) 6= O(x̂) and z(x) ≈ z(x̂). Conversely, Sabour et al. [217] and Jacobsen
et al. [120] show that excessive invariance of feature layers is common in non-robust models. These
observations are orthogonal to ours as we study invariances in a model’s classification layer, and
for bounded perturbations. As we show in Section 5.2, robustness to large perturbations under a
norm that is misaligned with human perception necessarily causes excessive invariance of the model’s
classifications (but implies nothing about the model’s feature layers).

Increasing model robustness to `p noise also leads to other tradeoffs, such as reduced accu-
racy [259] or reduced robustness to other small perturbations [130, 250, 281].

5.6 Conclusion

We have introduced and studied a fundamental tradeoff between two types of adversarial examples,
that stem either from excessive sensitivity or invariance of a classifier. This tradeoff is due to an
inherent misalignment between simple robustness notions and a task’s true perceptual metric. We
have demonstrated that defenses against `p bounded perturbations on MNIST promote invariance to
semantic changes. Our attack exploits this excessive invariance by changing image semantics while

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 97

preserving model decisions. For adversarially-trained and certified defenses, our attack can reduce a
model’s true accuracy to random guessing. Finally, we have studied the tradeoff between sensitivity
and invariance in a theoretical setting where excessive invariance can be explained by the existence
of overly-robust features.

Our results highlight the need for a more principled approach in selecting meaningful robustness
bounds and in measuring progress towards more robust models.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 98

5.7 Complete Set of Invariance Adversarial Examples

Below we give the 100 randomly-selected test images along with the invariance adversarial examples
that were shown during the human study.

Original images.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 99

All `0 invariance adversarial examples.

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 100

All `∞ invariance adversarial examples (ε = 0.3).

CHAPTER 5. LIMITATIONS OF DEFENSES: EXCESSIVE INVARIANCE 101

All `∞ invariance adversarial examples (ε = 0.4).

Part II

Privacy-Preserving
Machine Learning

102

103

In the second part of this dissertation, we focus on the problem of preserving user privacy in ma-
chine learning systems. Compared to the notion of robust learning which we covered in the first part
of this dissertation, the notion of private learning is seemingly easier to define. Indeed, robustness to
adversarial examples is inherently tied to human perception, and thus hard to formally characterize.
In contrast, the notions of privacy that we introduce hereafter are agnostic to the particular learning
task at hand, and instead consider generic mathematical bounds on the amount of information that
a machine learning system leaks about users’ data.

From a privacy perspective, a machine learning system can generically be viewed as a protocol
that evaluates some function func over inputs inpi belonging to m different parties, to produce
outputs outi for each party:

out1, . . . , outm ← func(inp1, . . . , inpm) .

For example, when m users jointly train a model on their own data, each user’s input inpi is a
training set D(i)

train (and possibly some randomness r(i)), and the function func outputs a trained
model out1 = · · · = outm := f . As a second example, when a client outsources predictions to a
remote service (i.e., m = 2), the client’s input is its evaluation data, inp1 := {x}, the remote service’s
input is the trained model, inp2 := {f}, and the function func computes the model prediction for
the client, i.e., out1 := f(x) (the service provider receives no output, out2 := ⊥).

What does it mean for such a protocol to be private? Intuitively, each protocol participant would
like to enjoy the benefits from the function’s output, whilst preventing other parties from learning
something about their input inpi. This intuition can be mathematically formalized in different ways,
which leads to orthogonal and complementary types of privacy protection.

Secure computation. One way of formalizing privacy originated in the literature on secure com-
putation in cryptography [12, 91, 279]. Secure computation relates to the privacy of the computation
of the function func. Intuitively, a protocol for computing the function func is secure if any (com-
putationally bounded) adversary learns nothing more than it could have also learned if the entire
computation had been performed by an “ideal trusted party”. This ideal party collects all parties’
inputs inpi , computes func, and distributes the outputs outi. Thus, secure computation asks that
the adversary learns nothing more about a user’s input inpi, than what can be inferred from the
adversary’s own inputs and outputs, (inpj , outj).

A remarkable result of Goldreich et al. [91] states that any function that can be efficiently
computed can also be efficiently computed securely (under standard cryptographic assumptions).
Thus, the privacy of the computation of a function func can always be guaranteed.

Instead of relying on purely cryptographic techniques, which leads to large performance over-
heads, Trusted Execution Environments (TEEs) can present a more pragmatic approach to secure

104

computation. A TEE is a processor that relies on hardware and software protections to isolate its
execution from other applications, and that has the ability to attest to remote parties that it is
executing a given piece of software. TEEs enable a simple and efficient solution to many secure
computation problems: one party hosts a TEE that attests that it is running the function func,
and each party sends their input encrypted to this TEE. The TEE then decrypts all inputs, runs
the function, and sends back the encrypted outputs.

The privacy guarantee offered by secure computation is sufficient for outsourcing the evaluation
of machine learning models: if a client’s predictions were outsourced to an ideal party, the adver-
sary would learn nothing about the user’s input. Prior work has shown how to construct secure
computation protocols tailored to the task of machine learning predictions, in particular for neural
networks, using either cryptographic techniques [126, 174] or TEEs [45, 103, 111, 183].

The situation for training machine learning models is more delicate, as secure computation
guarantees nothing about the privacy of the function func itself. To illustrate, consider a trivial
example where the function func is the identity function, i.e.,

out1 = . . . outm := {inp1, . . . , inpm} .

This is certainly an efficiently computable function, and thus we can build a protocol that
computes it “securely”. But this protocol would be trivial: simply collect and output every party’s
data. This protocol is private in the sense of secure computation, as the computation of the function
reveals nothing more than the function’s output. Yet, such a protocol clearly does not preserve the
privacy of users’ data.

While this example may seem extreme, machine learning algorithms are closer to this trivial
function than we might think. Consider for instance the function that learns a nearest-neighbor
classifier: the output function f is simply a database that contains all the training data. Similarly,
in a Support Vector Machine [54], the learned model’s support vectors (which are used to compute
predictions on new data) are also training data points. Finally, while deep neural networks do not
seem to encode their training data in such an explicit fashion, they certainly do encode partial
information about the training data points in the learned parameters. Indeed, prior work has shown
how to extract training data by interacting with a machine learning model [31, 32, 81]. Learning
algorithms thus call for a stronger notion of privacy, than privacy of the computation alone.

Differential privacy. A private learning algorithm should ideally prevent that the learned model
itself leaks information about each party’s training data. This notion of privacy can be formalized
using the language of differential privacy [66]. Intuitively, differential privacy allows a learning
algorithm to capture patterns that hold for large groups of users, while withholding information that
is unique to any individual user. More precisely, a (randomized) learning algorithm is differentially

105

private if it outputs a particular model with roughly the same probability whether a particular user’s
data was in the training set or not:

Definition 5.7 (Differential Privacy). An algorithm func satisfies (ε, δ)-differential privacy [65], if
for any datasets D,D′ that differ in one record, and any set of outputs S:

Pr[func(D) ∈ S] ≤ eε Pr[func(D′) ∈ S] + δ.

The parameter ε is referred to as the privacy budget. Informally, the lower the value of ε, the
more private the algorithm is. Setting the value of the privacy budget is an intricate problem, and
common wisdom suggests setting the budget to some small value such as ln(2) or ln(3) [66]. For
deep learning tasks, the value of the (provable upper-bound on the) privacy budget has typically
been set to larger values such as ε = 3 [198] or ε = 8 [1]. The additive error δ should be chosen to
be lower than 1/|D|.7 Typical values used in the literature include 1/2|D| and 1/|D|1.1.

The first algorithms for differentially private Empirical Risk Minimization [34] relied on a the-
oretical analysis that does not appear amenable to the training of deep neural networks. Later
works proposed privacy-preserving versions of stochastic gradient descent (SGD) [11, 239], which
were then adapted to the special case of training deep neural networks [1, 234]. In particular, the
seminal work of Abadi et al. [1] introduced, analyzed and evaluated DP-SGD, an algorithm tailored
to deep neural networks that achieved promising tradeoffs between a trained model’s accuracy and
the privacy budget ε.

Achieving privacy without sacrificing utility. In Chapter 6 and Chapter 7, we will consider,
respectively, the tasks of training machine learning models with differential privacy guarantees, and
of deploying a private machine learning prediction service using secure computation. For both tasks,
we introduce new techniques to obtain privacy-utility tradeoffs that are orders-of-magnitude better
than in prior work.

In Chapter 6, we introduce new techniques for differentially private training of neural networks.
Prior work found that state-of-the-art deep neural networks were hard to train with strong differential
privacy guarantees, and instead proposed specific network architectures tailored for DP-SGD [1, 197,
198]. We take this idea a step further, and ask whether we could obtain better results by foregoing
deep learning entirely! We find that standard feature engineering techniques—which are routinely
outperformed by end-to-end deep learning in the non-private setting—can lead to state-of-the-art
differentially private models for a variety of canonical vision tasks. We further show that when given
access to a large public dataset for a non-sensitive but related task, we can transfer features learned
on the public dataset to train differentially private models with close to no performance overhead.

7An (0, 1/|D|)-differentially private algorithm may be blatantly non private and output a randomly chosen record
in D with probability 1.

106

In Chapter 7, we introduce Slalom, a system for securely outsourcing neural network predictions
to a remote cloud provider equipped with a TEE. While TEEs offer a seemingly simple solution
to this problem, they still incur a large performance overhead compared to the custom hardware
that is typically used to run modern neural networks (e.g., a GPU or a TPU [125]). The approach
taken in Slalom is thus to further outsource part of the work performed by the TEE to these faster
(but untrusted) processors. Our protocol splits up a neural network evaluation into computationally
expensive matrix multiplications—which we show can be outsourced without compromising privacy
or integrity—and inexpensive non-linear activations that the TEE computes itself. Compared to a
baseline that runs all computations in the TEE, Slalom increases throughput and energy efficiency
by one order of magnitude.

The work in the second part of this dissertation demonstrates new avenues to achieve strong
privacy guarantees for machine learning, at a much lower performance cost than in prior work.

Chapter 6

Differentially Private Learning
With Better Features

Training deep neural networks with strong differential privacy (DP) guarantees comes at a significant
cost in utility [1, 10, 76, 284]. In fact, on many ML benchmarks the reported accuracy of private
deep learning still falls short of “shallow” (non-private) techniques. For example, on CIFAR-10,
Papernot et al. [198] train a neural network to 66.2% accuracy for a large DP budget of ε = 7.53,
the highest accuracy we are aware of for this privacy budget. Yet, without privacy, higher accuracy
is achievable with linear models and non-learned “handcrafted” features, e.g., [52, 187]. This leads
to the central question of this chapter:

Can differentially private learning benefit from handcrafted features?

We answer this question affirmatively by introducing simple and strong handcrafted baselines for
differentially private learning, that significantly improve the privacy-utility guarantees on canonical
vision benchmarks.

We leverage the Scattering Network (ScatterNet) of Oyallon and Mallat [187]—a non-learned
SIFT-like feature extractor [155]—to train linear models that improve upon the privacy-utility guar-
antees of deep learning on MNIST, Fashion-MNIST and CIFAR-10 (see Table 6.1). For example, on
CIFAR-10 we exceed the accuracy reported by Papernot et al. [198] while simultaneously improving
the provable DP-guarantee by 130×. On MNIST, we match the privacy-utility guarantees obtained
with PATE [196] without requiring access to any public data. We find that privately training deeper
neural networks on handcrafted features also significantly improves over end-to-end deep learning,
and even slightly exceeds the simpler linear models on CIFAR-10. Our results show that private
deep learning remains outperformed by handcrafted priors on many tasks, and thus has yet to reach
its “AlexNet moment” [142].

107

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 108

Table 6.1: Test accuracy of models with handcrafted ScatterNet features compared to
prior results with end-to-end CNNs for various DP budgets (ε, δ = 10−5). Lower ε values
provide stronger privacy. The end-to-end CNNs with maximal accuracy for each privacy budget are
underlined. We select the best ScatterNet model for each DP budget ε ≤ 3 with a hyper-parameter
search, and show the mean and standard deviation in accuracy for five runs.

Test Accuracy (%)
Data ε-DP Source CNN ScatterNet+linear ScatterNet+CNN

MNIST

1.2 Feldman and Zrnic [77] 96.6 98.1± 0.1 97.8± 0.1
2.0 Abadi et al. [1] 95.0 98.5± 0.0 98.4± 0.1
2.32 Bu et al. [23] 96.6 98.6± 0.0 98.5± 0.0
2.5 Chen and Lee [35] 90.0 98.7± 0.0 98.6± 0.0
2.93 Papernot et al. [197] 98.1 98.7± 0.0 98.7± 0.1
3.2 Nasr et al. [179] 96.1 –
6.78 Yu et al. [283] 93.2 –

Fashion-MNIST 2.7 Papernot et al. [197] 86.1 89.5± 0.0 88.7± 0.1
3.0 Chen and Lee [35] 82.3 89.7± 0.0 89.0± 0.1

CIFAR-10

3.0 Nasr et al. [179] 55.0 67.0± 0.1 69.3± 0.2
6.78 Yu et al. [283] 44.3 – –
7.53 Papernot et al. [197] 66.2 – –
8.0 Chen and Lee [35] 53.0 – –

We find that models with handcrafted features outperform end-to-end deep models, despite
having more trainable parameters. This is counter-intuitive, as the guarantees of private learning
degrade with dimensionality in the worst case [11].1 We explain the benefits of handcrafted features
by analyzing the convergence rate of non-private gradient descent. First, we observe that with low
enough learning rates, training converges similarly with or without privacy (both for models with
and without handcrafted features). Second, we show that handcrafted features significantly boost
the convergence rate of non-private learning at low learning rates. As a result, when training with
privacy, handcrafted features lead to more accurate models for a fixed privacy budget.

Considering these results, we ask: what is the cost of private learning’s “AlexNet moment”? That
is, which additional resources do we need in order to outperform our private handcrafted baselines?
Following McMahan et al. [166], we first consider the data complexity of private end-to-end learning.
On CIFAR-10, we use an additional 500,000 labeled Tiny Images from Carmon et al. [33] to show
that about an order of magnitude more private training data is needed for end-to-end deep models
to outperform our handcrafted features baselines. The high sample-complexity of private deep
learning could be detrimental for tasks that cannot leverage “internet-scale” data collection (e.g.,
most medical applications).

We further consider private learning with access to public data from a similar domain. In this
1A number of recent works have attempted to circumvent this worst-case dimensionality dependence by leveraging

the empirical observation that model gradients lie in a low-dimensional subspace [127, 289].

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 109

setting, handcrafted features can be replaced by features learned from public data via transfer
learning [210]. While differentially private transfer learning has been studied in prior work [1, 197],
we find that its privacy-utility guarantees have been underestimated. We revisit these results and
show that with transfer learning, strong privacy comes at only a minor cost in accuracy. For
example, given public unlabeled ImageNet data, we train a CIFAR-10 model to 92.7% accuracy for
a DP budget of ε = 2.

Our results demonstrate that higher quality features—whether handcrafted or transferred from
public data—are of paramount importance for improving the performance of private classifiers in
low (private) data regimes.

6.1 Preliminaries

We consider the standard central model of differential privacy (DP): a trusted party trains an ML
model f on a private dataset D, and publicly releases the model. The learning algorithm A satisfies
(ε, δ)-differential privacy [65], if for any datasets D,D′ that differ in one record, and any set of
models S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

DP bounds an adversary’s ability to infer information about any individual training point from
the model. Cryptography can split the trust in a central party across users [19, 123].

Prior work has trained private deep neural networks “end-to-end” (e.g., from image pixels), with
large losses in utility [1, 198, 234]. In contrast, we study the benefits of handcrafted features that
encode priors on the learning task’s public domain (e.g., edge detectors for images). Although
end-to-end neural networks outperform such features in the non-private setting, our thesis is that
handcrafted features result in an easier learning task that is more amenable to privacy. We focus
on computer vision, a canonical domain for private deep learning [1, 179, 198, 283]), with a rich
literature on handcrafted features [22, 58, 155]. Our approach can be extended to handcrafted
features in other domains, e.g., text or speech.

6.1.1 Scattering Networks

We use the Scattering Network (ScatterNet) of Oyallon and Mallat [187], a feature extractor that
encodes natural image priors (e.g., invariance to small rotations and translations) using a cascade
of wavelet transforms [22]. As this cascade of transforms is data independent, we can obtain a
differentially private classifier by privately fine-tuning a (linear) model on top of locally extracted
features.

Given an input x, the output of a scattering network of depth J is a feature vector given by

S(x) := AJ
∣∣W2 |W1 x|

∣∣ , (6.1)

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 110

where the operatorsW1 andW2 are complex-valued wavelet transforms, each followed by a non-linear
complex modulus, and the final operator A performs spatial averaging over patches of 2J features.
Both wavelet transforms W1 and W2 are linear operators that compute a cascade of convolutions
with filters from a fixed family of wavelets. For an input image of spatial dimensions H × W ,
the ScatterNet is applied to each of the image’s color channels independently to yield an output
tensor of dimension (K, H2J ,

W
2J). The channel dimensionality K depends on the network depth J

and the granularity of the wavelet filters, and is chosen so that K/22J = O(1) (i.e., the ScatterNet
approximately preserves the data dimensionality).

For all experiments, we use the default parameters proposed by Oyallon and Mallat [187], namely
a Scattering Network of depth J = 2, consisting of wavelet filters rotated along eight angles. For an
an input image of spatial dimensions H ×W , this configuration produces an output of dimension
(K,H/4,W/4), with K = 81 for grayscale images, and K = 243 for RGB images. Note that the
transform is thus expansive.

Why ScatterNets? In this paper, we propose to use the ScatterNet features of Oyallon and Mallat
[187] as a basis for shallow differentially private vision classifiers. We briefly discuss a number of
other shallow approaches that produce competitive results for canonical vision tasks, but which
appear less suitable for private learning.

Unsupervised feature dictionaries. Coates and Ng [52] achieve above 80% test accuracy on
CIFAR-10 with linear models trained on top of a dictionary of features extracted from a mixture
of image patches. Their approach relies on a combination of many ‘tricks”, including data normal-
ization, data whitening, tweaks to standard Gaussian-Mixture-Model (GMM) algorithms, feature
selection, etc. While it is conceivable that each of these steps could be made differentially private, we
opt here for a much simpler unlearned baseline that is easier to analyze and to apply to a variety of
different tasks. We note that existing work on differentially-private learning of mixtures (e.g., [181])
has mainly focused on asymptotic guarantees, and we are not aware of any exiting algorithms that
have been evaluated on high-dimensional datasets such as CIFAR-10.

Kernel Machines. Recent work on Neural Tangent Kernels [121] has shown that the performance
of deep neural networks on CIFAR-10 could be matched by specialized kernel methods [5, 150,
227]. Unfortunately, private learning with non-linear kernels is intractable in general [34, 216].
Chaudhuri et al. [34] propose to obtain private classifiers by approximating kernels using random
features [208], but the very high dimensionality of the resulting learning problem makes it challenging
to outperform our handcrafted features baseline. Indeed, we had originally considered a differentially-
private variant of the random-feature CIFAR-10 classifier proposed in [211], but found the model’s
high dimensionality (over 10 million features) to be detrimental to private learning.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 111

input : Data {x(1) . . . , x(N)}, learning rate η, noise scale σ, batch size B, gradient norm
bound C, epochs T

1 Initialize θ0 randomly
for t ∈ [T · N/B] do

2 Sample a batch Bt by selecting each x(i) independently with probability B/N

3 For each x ∈ Bt: gt(x)← ∇θtL(θt, x(i)) // compute per-sample gradients

4 g̃t(x)← gt(x) ·min(1,C/‖gt(x)‖2) // clip gradients

5 g̃t ← 1
B

(∑
x∈Bt

g̃t(x) +N (0, σ2C2I)
)

// add Gaussian noise to average gradient

6 θt+1 ← θt − ηg̃t // SGD step

end
output: θTN/B

Algorithm 3: The DP-SGD Algorithm [1].

6.1.2 Differentially Private Stochastic Gradient Descent

Throughout this work, we use the DP-SGD algorithm of Abadi et al. [1] (see Algorithm 3).
The tightest known privacy analysis of the DP-SGD algorithm is based on the notion of Rényi

differential privacy (RDP) from Mironov [170], which we recall next.

Definition 6.1 (Rényi Divergence). For two probability distributions P and Q defined over a range
Z, the Rényi divergence of order α > 1 is

Dα(P‖Q) := 1
α− 1 log E

x∼Q

(
P(x)
Q(x)

)α
.

Definition 6.2 ((α, ε)-RDP [170]). A randomized mechanism A : D → Z is said to have ε-Rényi
differential privacy of order α, or (α, ε)-RDP for short, if for any adjacent D,D′ ∈ D it holds that

Dα(A(D)‖A(D′)) ≤ ε .

To analyze the privacy guarantees of DP-SGD, we numerically compute Dα(A(D)‖A(D′)) for a
range of orders α [171, 269] in each training step, where D and D′ are training sets that differ in a
single element. To obtain privacy guarantees for t training steps, we use the composition properties
of RDP:

Lemma 6.3 (Adaptive composition of RDP [171]). Let A : D→ R1 be (α, ε1)-RDP and A′ : Z1 ×
D→ Z2 be (α, ε2)-RDP, then the mechanism defined as (X,Y), where X ∼ A(D) and Y ∼ A′(X,D),
satisfies (α, ε1 + ε2)-RDP.

Finally, the RDP guarantees of the full DP-SGD procedure can be converted into a (ε, δ)-DP
guarantee:

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 112

Lemma 6.4 (From RDP to (ε, δ)-DP [171]). If A is an (α, ε)-RDP mechanism, it also satisfies
(ε+ log 1/δ

α−1 , δ)-DP for any 0 < δ < 1.

6.1.3 Differentially Private ScatterNet Classifiers

To train private classifiers, we use the DP-SGD algorithm2 of Abadi et al. [1] (see Section 6.1.2).
DP-SGD works as follows: (1) batches of expected size B are sampled at random;3 (2) gradients are
clipped to norm C; (3) Gaussian noise of variance σ2C2/B2 is added to the mean gradient. DP-SGD
guarantees privacy for gradients, and is thus oblivious to preprocessing applied independently to
each data sample, such as the ScatterNet transform.

When training a supervised classifier on top of ScatterNet features with gradient descent, we find
that normalizing the features is crucial to obtain strong performance. We consider two approaches:

• Group Normalization [273]: the channels of S(x) are split into G groups, and each is normalized
to zero mean and unit variance. Data points are normalized independently so this step incurs
no privacy cost.

• Data Normalization: the channels of S(x) are normalized by their mean and variance across
the training data. This step incurs a privacy cost as the per-channel means and variances need
to be privately estimated.

Evaluation of feature normalization. To evaluate the effect of feature normalization in Ta-
ble 6.2, we train linear models on ScatterNet features using DP-SGD without noise (σ = 0). We
train one model without feature normalization, one with Data Normalization, and three with Group
Normalization [273] with G ∈ {9, 27, 81} groups. The hyper-parameters are given below. For each
dataset, we report the best choice for the group size G.

Parameter MNIST Fashion-MNIST CIFAR-10
Gradient clipping norm C 0.1 0.1 0.1
Momentum 0.9 0.9 0.9
Epochs T 20 20 20
Batch size B 512 512 512
Learning rate η 2 4 2

Best choice of groups G 27 81 27

2Yu et al. [282] show that DP-SGD outperforms other algorithms for private convex optimization, e.g., logistic
regression with output or objective perturbation [11, 34, 133]. In Section 6.5.2, we show that DP-SGD also outperforms
Privacy Amplification by Iteration [78] in our setting.

3Existing DP-SGD implementations such as TensorFlow/privacy (https://github.com/tensorflow/privacy) and
Opacus (https://github.com/pytorch/opacus), as well as many prior works (e.g., [1, 198]) heuristically split the data
into random batches of size exactly B. We use the same heuristic and show in Section 6.5.3 that using the correct
batch sampling does not affect our results.

https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 113

Table 6.2: Effect of feature normalization on the test accuracy of non-private ScatterNet
models after 20 epochs. We also report the maximal test accuracy upon convergence (mean and
standard deviation over five runs).

Normalization (Test accuracy after 20 epochs)

Dataset None Group Normalization Data Normalization Maximal Accuracy

MNIST 95.9± 0.0 99.1± 0.0 99.1± 0.0 99.3± 0.0
Fashion-MNIST 82.6± 0.1 90.9± 0.1 91.0± 0.2 91.5± 0.0
CIFAR-10 58.0± 0.1 67.8± 0.2 70.7± 0.1 71.1± 0.0

Results for training linear ScatterNet models with various feature normalization techniques are in
Table 6.2. Normalization significantly accelerates convergence of non-private linear models trained
on ScatterNet features, for MNIST, Fashion-MNIST and CIFAR-10. For CIFAR-10, Data Nor-
malization performs significantly better than Group Normalization, so the small privacy cost of
estimating channel statistics is warranted. While the maximal test accuracy of these models falls
short of state-of-the-art CNNs, it exceeds all previously reported results for differentially private
neural networks (even for large privacy budgets).

Private feature normalization. To privately apply Data Normalization to the ScatterNet fea-
tures (which greatly improves convergence, especially on CIFAR-10), we use the PrivDataNorm

procedure in Algorithm 4 to compute private estimates of the per-channel mean and variance of the
ScatterNet features.

In order to obtain tight privacy guarantees for the full training procedure (i.e., privacy-preserving
Data Normalization followed by DP-SGD), we first derive the RDP guarantees of PrivDataNorm:

Claim 6.5. The PrivDataNorm procedure is (α, α/σ2
norm)-RDP for any α > 1.

The above claim follows from the RDP guarantees of the Gaussian mechanism in [170], together
with the composition properties of RDP in Lemma 6.3 above.

Finally, given an RDP guarantee of (α, ε1) for PrivDataNorm, and an RDP guarantee of (α, ε2)
for DP-SGD, we apply Lemma 6.3 to obtain an RDP guarantee of (α, ε1 + ε2), and convert to a DP
guarantee using Lemma 6.4.

6.2 Evaluating Private ScatterNet Classifiers

We compare differentially private ScatterNet classifiers and deep learning models on MNIST [145],
Fashion-MNIST [274] and CIFAR-10 [141]. Many prior works report improvements over the DP-SGD
procedure of Abadi et al. [1] for these datasets. As we will show, ScatterNet classifiers outperform all

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 114

Function PrivChannelMean(data D ∈ RN×K×H×W , norm bound C, noise scale σnorm)

1 For 1 ≤ i ≤ N : µi ← Eh,w
[
D(i,·,h,w)

]
∈ RK // compute per-channel means

2 µi ← µi ·min(1,C/‖µi‖2) // clip each sample’s per-channel means

3 µ̃← Ei[µi] + 1
NN (0, σ2

normC
2I) // private mean using Gaussian mechanism

4 return µ̃

Function PrivDataNorm(data D, norm bounds C1, C2, noise scale σnorm, threshold τ)

1 µ̃← PrivChannelMean(D,C1, σnorm) // private per-channel mean

2 µ̃D2 ← PrivChannelMean(D2, C2, σnorm) // private per-channel mean-square

3 Ṽar ← max(µ̃D2 − µ̃2, τ) // private per-channel variance

4 For each 1 ≤ i ≤ N , D̂i ← (Di − µ̃)/
√

Ṽar // normalize each sample

5 return D̂
Algorithm 4: Private Data Normalization.

prior approaches while making no algorithmic changes to DP-SGD. ScatterNet classifiers can thus
serve as a strong baseline for evaluating proposed improvements over DP-SGD in the future.

6.2.1 Experimental Setup

Most prior works find the best model for a given DP budget using a hyper-parameter search. As
the private training data is re-used many times, this overestimates the privacy guarantees. Private
hyper-parameter search is possible at a small cost in the DP budget [152], but we argue that fully
accounting for this privacy leakage is hard as even our choices of architectures, optimizers, hyper-
parameter ranges, etc. are informed by prior analysis of the same data. As in prior work, we thus do
not account for this privacy leakage, and instead compare ScatterNet models and end-to-end CNNs
with similar hyper-parameter searches. Moreover, we find that ScatterNet models are very robust
to hyper-parameter changes and achieve near-optimal utility with random hyper-parameters (see
Table 6.7). To evaluate ScatterNet models, we apply the following hyper-parameter search:

• We begin by fixing a privacy schedule. We target a moderate differential privacy budget of
(ε = 3, δ = 10−5) and compute the noise scale σ of DP-SGD so that the privacy budget is
consumed after T epochs. We try different values of T , with larger values resulting in training
for more steps but with higher noise.

• We fix the gradient clipping threshold for DP-SGD to C = 0.1 for all our experiments. Thakkar
et al. [247] suggest to vary this threshold adaptively, but we did not observe better performance
by doing so.

• We try various batch sizes B and base learning rates η, with linear learning rate scaling [97].4

4Our decision to try various batch sizes is inspired by Abadi et al. [1] who found that this parameter has a large

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 115

Table 6.3: Hyper-parameters for the evaluation of differentially private classifiers. We
use the same set of parameters for private linear classifiers fine-tuned on ScatterNet features, CNNs
fine-tuned on ScatterNet features, and end-to-end CNNs.

Parameter MNIST Fashion-MNIST CIFAR-10

DP guarantee (ε, δ) (3, 10−5) (3, 10−5) (3, 10−5)
Gradient clipping norm C 0.1 0.1 0.1
Momentum 0.9 0.9 0.9
Batch size B {512, 1024, . . . , 16384} {512, 1024, . . . , 16384} {512, 1024, . . . , 16384}
Learning rate η {1/4, 1/2, 1, 2} · B/512 {1/4, 1/2, 1, 2} · B/512 {1/8, 1/4, 1/2, 1} · B/512

Epochs T {15, 25, 40} {15, 25, 40} {30, 60, 120}
DP-SGD noise scale σ calculated numerically so that (ε, δ)-DP is spent after T epochs

Group Norm. groups G {9, 27, 81} {9, 27, 81} {9, 27, 81}
Data Norm. (C1, C2, σnorm) (0.2, 0.05, {6, 8}) (0.3, 0.15, {6, 8}) (1.0, 1.5, {6, 8})

• We try both Group Normalization [273] with different choices for the number of groups, and
private Data Normalization with different choices of privacy budgets (see Section 6.1.2 for
details).

We perform a grid-search over all parameters as detailed in Table 6.3. We compare our ScatterNet
classifiers to the CNN models of Papernot et al. [198], which achieve the highest reported accuracy
for our targeted privacy budget for all three datasets. We also perform a grid-search for these models,
which reproduces the results of Papernot et al. [198]. We use the ScatterNet implementation from
Kymatio [4], and the DP-SGD implementation in opacus5 (formerly called pytorch-dp).

We use DP-SGD with momentum for all experiments. Prior work found that the use of adaptive
optimizers (e.g., Adam [134]) provided only marginal benefits for private learning [197]. Moreover,
we use no data augmentation, weight decay, or other mechanisms aimed at preventing overfitting.
The reason is that differential privacy is itself a powerful regularizer (informally, differential privacy
implies low generalization error [67]), so our models all underfit the training data.

We use a NVIDIA Titan Xp GPU with 12GB of RAM for all our experiments. To run DP-SGD
with large batch sizes B, we use the “virtual batch” approach of opacus: the average of clipped
gradients is accumulated over multiple “mini-batches”; once B gradients have been averaged, we
add noise and take a gradient update step.
effect on the performance of DP-SGD. Yet, in Section 6.5.1 we show empirically, and argue formally that with a linear
learning rate scaling [97], DP-SGD performs similarly for a range of batch sizes. As a result, we recommend following
the standard approach for tuning non-private SGD, wherein we fix the batch size and tune the learning rate.

5https://github.com/pytorch/opacus. Accessed 2021-6-22.

https://github.com/pytorch/opacus

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 116

6.2.2 Model Architectures

Linear ScatterNet classifiers. The default Scattering Network of Oyallon and Mallat [187]
extracts feature vectors of size (81, 7, 7) for MNIST and Fashion-MNIST and of size (243, 8, 8) for
CIFAR-10. We then train a standard logistic regression classifier (with per-class bias) on top of
these features, as summarized below:

Dataset Image size Linear ScatterNet size
MNIST 28× 28 3969× 10
Fashion-MNIST 28× 28 3969× 10
CIFAR-10 32× 32× 3 15552× 10

End-to-end CNNs. We use the CNN architectures proposed by Papernot et al. [198], which were
found as a result of an architecture search tailored to DP-SGD.6 Notably, these CNNs are quite
small (since the noise of DP-SGD grows with the model’s dimensionality) and use Tanh activations,
which Papernot et al. [198] found to outperform the more common ReLU activations. For the
experiments in Section 6.3, we also consider a smaller CIFAR-10 model, with a dimensionality
comparable to the linear ScatterNet classifier. While the standard model has six convolutional layers
of size 32-32-64-64-128-128, the smaller model has five convolutional layers of size 16-16-32-32-64
(with max-pooling after the 2nd, 4th and 5th convolution).

Table 6.4: Architecture of end-to-end CNN models. The models are from [198] and use
Tanh activations. In Section 6.3, we also use a smaller variant of the CIFAR-10 model with five
convolutional layers of 16-16-32-32-64 filters.

(a) MNIST and Fashion-MNIST.

Layer Parameters

Convolution 16 filters of 8x8, stride 2, padding 2
Max-Pooling 2x2, stride 1
Convolution 32 filters of 4x4, stride 2, padding 0
Max-Pooling 2x2, stride 1
Fully connected 32 units
Fully connected 10 units

(b) CIFAR-10.

Layer Parameters

Convolution x2 32 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2
Convolution x2 64 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2
Convolution x2 128 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2
Fully connected 128 units
Fully connected 10 units

ScatterNet CNNs. To fine-tune CNNs on top of ScatterNet features, we adapt the CNNs from
Table 6.4. As the ScatterNet feature vector is larger than the input image (784 → 3969 features
for MNIST and Fashion-MNIST, and 3072 → 15552 features for CIFAR-10), we use smaller CNN

6The CNN architecture for CIFAR-10 in Table 6.4 differs slightly from that described in [198]. Based on discussions
with the authors of [198], the architecture in Table 6.4 is the correct one to reproduce their best results.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 117

models. For MNIST and Fashion MNIST, we reduce the number of convolutional filters. For CIFAR-
10, we reduce the network depth from 8 to 3, which results in a model with approximately as many
parameters as the linear ScatterNet classifier.

Table 6.5: Architecture of CNN models fine-tuned on ScatterNet features. The models
use Tanh activation.

(a) MNIST and Fashion-MNIST.

Layer Parameters

Convolution 16 filters of 3x3, stride 2, padding 1
Max-Pooling 2x2, stride 1
Convolution 32 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 1
Fully connected 32 units
Fully connected 10 units

(b) CIFAR-10.

Layer Parameters

Convolution 64 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2
Convolution 64 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2
Fully connected 10 units

Non-private accuracy. For each of the model architectures described above, we report the best
achieved test accuracy without privacy, and without any other form of explicit regularization. For
MNIST and Fashion-MNIST, fine-tuning a linear model or a CNN on top of ScatterNet features
results in similar performance, whereas on CIFAR-10, the CNN performs slightly better. For Fashion-
MNIST the end-to-end CNN performs slightly worse than the linear model (mainly due to a lack
of regularization). For CIFAR-10, the end-to-end CNN significantly outperforms the ScatterNet
models.

Table 6.6: Test accuracy for models trained without privacy. Average and standard deviation
are computed over five runs.

Dataset ScatterNet+Linear ScatterNet+CNN CNN
MNIST 99.3± 0.0 99.2± 0.0 99.2± 0.0
Fashion-MNIST 91.5± 0.0 91.5± 0.2 90.1± 0.2
CIFAR-10 71.1± 0.0 73.8± 0.3 80.0± 0.1

6.2.3 Results

To measure a classifier’s accuracy for a range of privacy budgets, we compute the test accuracy as
well as the DP budget ε after each training epoch (with the last epoch corresponding to ε = 3). For
various DP budgets (ε, δ = 10−5) used in prior work, Table 6.1 shows the maximal test accuracy
achieved by a linear ScatterNet model in our hyper-parameter search, averaged over five runs. We
also report results with CNNs trained on ScatterNet models, which are described in more detail
below. Figure 6.1 further compares the full privacy-accuracy curves of our linear ScatterNets and of
the CNNs of Papernot et al. [198]. Linear models with handcrafted features significantly outperform

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 118

1 2 3

ε-DP

94

96

98

100

T
es

t
A

cc
ur

ac
y

(%
)

98.7%

98.1%

ScatterNet+Linear
ScatterNet+CNN
CNN

(a) MNIST

1 2 3

ε-DP

75

80

85

90

T
es

t
A

cc
ur

ac
y

(%
)

89.7%
89.0%

86.0%

(b) Fashion-MNIST

1 2 3

ε-DP

40

50

60

70

T
es

t
A

cc
ur

ac
y

(%
)

67.0%

69.3%

59.2%

(c) CIFAR-10

Figure 6.1: Privacy-accuracy tradeoffs for ScatterNet classifiers. Shows the highest test
accuracy achieved for each DP budget (ε, δ = 10−5) for linear ScatterNet classifiers, CNNs on top
of ScatterNet features, and end-to-end CNNs. Shows mean and standard deviation across five runs.

prior results with end-to-end CNNs, for all privacy budgets ε ≤ 3 we consider. Even when prior
work reports results for larger budgets, they do not exceed the accuracy of our baseline.

In particular, for CIFAR-10, we match the best CNN accuracy in [198]—namely 66.2% for a
budget of ε = 7.53—with a much smaller budget of ε = 2.6. This is an improvement in the DP-
guarantee of e4.9 ≈ 134. On MNIST, we significantly improve upon CNN models, and match the
results of PATE [196], namely 98.5% accuracy at ε = 1.97, in a more restricted setting (PATE uses
5,000 public unlabeled MNIST digits).

Training CNNs on handcrafted features. Since linear models trained on handcrafted features
outperform deep models trained end-to-end, a natural question is whether training deeper models
on these features achieves even better results. We repeat the above experiment with a similar CNN
model trained on ScatterNet features (see Table 6.5). The privacy-accuracy curves for these models
are in Figure 6.1. We find that handcrafted features also improve the utility of private deep models,
a phenomenon which we analyze and explain in Section 6.3. On CIFAR-10, the deeper ScatterNet
models even slightly outperform the linear models, while for MNIST and Fashion-MNIST the linear
models perform best. This can be explained by the fact that in the non-private setting, linear
ScatterNet models achieve close to state-of-the-art accuracy on MNIST and Fashion-MNIST, and
thus there is little room for improvement with deeper models (see Table 6.6). Table 6.7 further
shows that ScatterNet CNNs are also less sensitive to hyper-parameters than end-to-end CNNs.

Note that on each dataset we consider, end-to-end CNNs can outperform ScatterNet models when
trained without privacy. Thus, end-to-end CNNs trained with DP-SGD must eventually surpass
ScatterNet models for large enough privacy budgets. But this currently requires settling for weak
provable privacy guarantees. On CIFAR-10 for example, ScatterNet classifiers still outperform end-
to-end CNNs for ε = 7.53 [198]. While the analysis of DP-SGD might not be tight, Jagielski et al.
[122] suggest that the true ε guarantee of DP-SGD is at most one order of magnitude smaller than
the current analysis suggests. Thus, surpassing handcrafted features for small privacy budgets on
CIFAR-10 may require improvements beyond a tighter analysis of DP-SGD.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 119

Table 6.7: Accuracy variability across hyper-parameters. For each model, we report the
minimum, maximum, median and median absolute deviation (MAD) in test accuracy (in %) achieved
for a DP budget of (ε = 3, δ = 10−5). The maximum accuracy below may exceed those in Table 6.1
and Figure 6.1, which are averages of five runs. SN stands for ScatterNet.

MNIST
Model Min Max Median MAD
SN + Linear 96.8 98.8 98.4 0.2
SN + CNN 95.6 98.8 98.1 0.3
CNN 86.1 98.2 97.4 0.5

Fashion-MNIST
Min Max Median MAD
85.3 89.8 88.7 0.5
77.8 89.1 87.2 1.0
20.2 86.2 83.6 1.8

CIFAR-10
Min Max Median MAD
59.5 67.0 65.4 0.9
57.3 69.5 66.9 1.6
39.4 59.2 52.5 5.4

6.2.4 Analysis of Hyper-parameters

As noted in Section 6.2.1, our models (and those of most prior work) are the result of a hyper-
parameter search. While we do not account for the privacy cost of this search, Table 6.7 shows that an
additional advantage of ScatterNet classifiers is an increased robustness to hyper-parameter changes.
In particular, for CIFAR-10 the worst configuration for linear ScatterNet classifiers outperforms the
best configuration for end-to-end CNNs. Moreover, on MNIST and Fashion-MNIST, the median
accuracy of linear ScatterNet models outperforms the best end-to-end CNN.

In the table below, we provide the hyper-parameters that result in the highest test accuracy for
our target DP budget of (ε = 3, δ = 10−5). We did not consider larger privacy budgets for ScatterNet
classifiers, as the accuracy we achieve at ε = 3 is close to the accuracy of non-private ScatterNet
models (see Table 6.2). For each model, we report the base learning rate, before re-scaling by B/512.

MNIST Fashion-MNIST CIFAR-10

Parameter SN+Linear SN+CNN CNN SN+Linear SN+CNN CNN SN+Linear SN+CNN CNN

Batch size B 4096 1024 512 8192 2048 2048 8192 8192 1024
Base LR η 1 1⁄2 1⁄2 1 1 1 1⁄4 1⁄4 1⁄2

Epochs T 40 25 40 40 40 40 60 60 30

Groups G - - - 27 27 - - - -
Data Norm. σnorm 8 8 - - - - 8 8 -

We find that some hyper-parameters that result in the best performance are at the boundary
of our search range. Yet, as we show in Figure 6.2, modifying these hyper-parameters results in no
significant upward trend, so we refrained from further increasing our search space.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 120

512 1024 2048 4096 8192 16384

Batch Size

94

95

96

97

98

99

100

T
es

t
A

cc
ur

ac
y

(%
)

0.25 0.5 1.0 2.0

Base Learning Rate

94

95

96

97

98

99

100

T
es

t
A

cc
ur

ac
y

(%
)

15 25 40

Training Epochs

94

95

96

97

98

99

100

T
es

t
A

cc
ur

ac
y

(%
)

G = 9 G = 27 G = 81 σnorm = 6 σnorm = 8

Normalization

94

95

96

97

98

99

100

T
es

t
A

cc
ur

ac
y

(%
)

ScatterNet (max)

ScatterNet (median)

CNN (max)

CNN (median)

(a) MNIST

512 1024 2048 4096 8192 16384

Batch Size

80

82

84

86

88

90

92

T
es

t
A

cc
ur

ac
y

(%
)

0.25 0.5 1.0 2.0

Base Learning Rate

80

82

84

86

88

90

92

T
es

t
A

cc
ur

ac
y

(%
)

15 25 40

Training Epochs

80

82

84

86

88

90

92

T
es

t
A

cc
ur

ac
y

(%
)

G = 9 G = 27 G = 81 σnorm = 6 σnorm = 8

Normalization

80

82

84

86

88

90

92

T
es

t
A

cc
ur

ac
y

(%
)

ScatterNet (max)

ScatterNet (median)

CNN (max)

CNN (median)

(b) Fashion-MNIST

512 1024 2048 4096 8192 16384

Batch Size

45

50

55

60

65

70

T
es

t
A

cc
ur

ac
y

(%
)

0.125 0.25 0.5 1.0

Base Learning Rate

45

50

55

60

65

70

T
es

t
A

cc
ur

ac
y

(%
)

30 60 120

Training Epochs

45

50

55

60

65

70

T
es

t
A

cc
ur

ac
y

(%
)

G = 9 G = 27 G = 81 σnorm = 6 σnorm = 8

Normalization

45

50

55

60

65

70

T
es

t
A

cc
ur

ac
y

(%
)

ScatterNet (max)

ScatterNet (median)

CNN (max)

CNN (median)

(c) CIFAR-10

Figure 6.2: Median and maximum test accuracy with one hyper-parameter fixed. Shows
the median and maximum test accuracy of linear ScatterNet classifiers and end-to-end CNNs when
we fix one hyper-parameter in Table 6.3 and run a grid-search over all others (for a privacy budget
of (ε = 3, δ = 10−5)).

Figure 6.2 shows the median and maximum model performance for different choices of a single
parameter. The median and maximum are computed over all choices for the other hyper-parameters
in Table 6.3. As we can see, the maximal achievable test accuracy is remarkably stable when fixing
one of the algorithm’s hyper-parameters, with the exception of overly large batch sizes or overly low
learning rates for end-to-end CNNs.

6.3 How Do Handcrafted Features Help?

In this section, we analyze why private models with handcrafted features outperform end-to-end
CNNs. We first consider the dimensionality of our models, but show that this does not explain the
utility gap. Rather, we find that the higher accuracy of ScatterNet classifiers is due to their faster
convergence rate when trained without noise.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 121

Table 6.8: Number of trainable parameters of our models. For CIFAR-10, we consider two
different end-to-end CNN architectures (see Table 6.4), the smaller of which has approximately as
many parameters as the linear ScatterNet model.

MNIST & Fashion-MNIST CIFAR-10

ScatterNet+Linear 40K 155K
ScatterNet+CNN 33K 187K
CNN 26K 551K / 168K

Table 6.9: Comparison of small and large CIFAR-10 CNNs. Test accuracy (in %) for two
different model sizes on CIFAR-10 for a DP budget of (ε = 3, δ = 10−5). We compare two variants
of the end-to-end CNN architecture from Table 6.4, with respectively 551K and 168K parameters.
Average and standard deviation computed over five runs.

Model Parameters Accuracy

CNN 168K 60.7± 0.3
551K 59.2± 0.1

6.3.1 Smaller Models Are Not Easier to Train Privately

The utility of private learning typically degrades as the model’s dimensionality increases [11, 34].
This is also the case with DP-SGD which adds Gaussian noise, of scale proportional to the gradients,
to each model parameter. We thus expect smaller models to be easier to train privately. Yet, as we
see from Table 6.8, for MNIST and Fashion-MNIST the linear ScatterNet model hasmore parameters
than the CNNs. For CIFAR-10, the end-to-end CNN we used is larger, so we repeat the experiment
from Section 6.2 with a CNN of comparable size to the ScatterNet classifiers.

Specifically, we take the end-to-end CIFAR-10 CNN architecture from Table 6.4 and reduce the
number of filters in each convolutional layer by a factor of two and remove the last convolutional
layer). This results in a CNN model with a comparable number of trainable parameters as the linear
ScatterNet classifier (see Table 6.8). In Table 6.9, we compare the privacy-utility of this smaller
CNN models with the original larger CNN model evaluated in Section 6.2. While the change of
model architecture does affect the model accuracy, the effect is minor, and the accuracy remains far
below that of the ScatterNet classifiers with a comparable number of parameters.

Thus, the dimensionality of ScatterNet classifiers fails to explain their better performance.

6.3.2 Models With Handcrafted Features Converge Faster Without Pri-
vacy

DP-SGD typically requires a smaller learning rate than noiseless (clipped) SGD, so that the added
noise gets averaged out over small steps. We indeed find that the optimal learning rate when training
with DP-SGD is an order of magnitude lower than the optimal learning rate for training without

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 122

noise addition (with gradients clipped to the same norm in both cases).
To understand the impact of gradient noise on the learning process, we conduct the following

experiment: we select a low learning rate that is near-optimal for training models with gradient
noise, and a high learning rate that is near-optimal for training without noise. For both learning
rates, we train models both with and without noise. When training without privacy, we still clip
gradients to a maximal norm of C = 0.1, but omit the noise addition step of DP-SGD (and we also
omit the noise when using Data Normalization). The hyper-parameters for this experiment are in
the table below.

Learning rate η
Dataset Batch size B Gradient Norm C (low, high) Epochs T Normalization

MNIST 512 0.1 (1⁄2, 8) 40 Data Norm. (σnorm = 8)
Fashion-MNIST 512 0.1 (1, 16) 40 Group Norm. (G = 81)
CIFAR-10 512 0.1 (1⁄4, 4) 60 Data Norm. (σnorm = 8)

Figure 6.3 shows that with a high learning rate, all classifiers converge rapidly when trained
without noise, but gradient noise vastly degrades performance. With a low learning rate however,
training converges similarly whether we add noise or not. What distinguishes the ScatterNet models
is the faster convergence rate of noiseless SGD. Thus, we find that handcrafted features are beneficial
for private learning because they result in a simpler learning task where training converges rapidly
even with small update steps.

Our analysis suggests two avenues towards obtaining higher accuracy with private deep learning:

• Faster convergence: Figure 6.3 suggests that faster convergence of non-private training could
translate to better private learning. DP-SGD with adaptive updates (e.g., Adam [134]) indeed
sometimes leads to small improvements [35, 198, 288]. Investigating private variants of second-
order optimization methods is an interesting direction for future work.

• More training steps (a.k.a more data): For a fixed DP-budget ε and noise scale σ, increasing
the training set size N allows for running more steps of DP-SGD [166]. In Section 6.4.1, we
investigate how the collection of additional private data impacts the utility of private end-to-
end models.

6.4 Towards Better Private Deep Learning

We have shown that on standard vision tasks, private learning strongly benefits from handcrafted
features. Further improving our private baselines seems hard, as they come close to the maximal
accuracy of ScatterNet models (see Table 6.2). We thus turn to other avenues for obtaining stronger
privacy-utility guarantees. We focus on CIFAR-10, and discuss two natural paths towards better

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 123

0 20 40

Epochs

90

92

94

96

98

100

T
ra

in
A

cc
ur

ac
y

(%
)

Low LR (η = 0.5)

ScatterNet+Linear
ScatterNet+CNN
CNN
No Noise

0 20 40

Epochs

90

92

94

96

98

100

High LR (η = 8.0)

(a) MNIST

0 20 40

Epochs

65

75

85

95

T
ra

in
A

cc
ur

ac
y

(%
)

Low LR (η = 1.0)

ScatterNet+Linear
ScatterNet+CNN
CNN
No Noise

0 20 40

Epochs

65

75

85

95

High LR (η = 16.0)

(b) Fashion-MNIST

0 20 40 60

Epochs

0

20

40

60

80

100

T
ra

in
A

cc
ur

ac
y

(%
)

Low LR (η = 0.25)

ScatterNet+Linear
ScatterNet+CNN
CNN
No Noise

0 20 40 60

Epochs

0

20

40

60

80

100

High LR (η = 4.0)

(c) CIFAR-10

Figure 6.3: Convergence rates of private and non-private models. Compares the convergence
rates of linear classifiers fine-tuned on ScatterNet features, CNNs fine-tuned on ScatterNet features,
and end-to-end CNNs with and without noise addition in DP-SGD. (Left): low learning rate. (Right):
high learning rate.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 124

private models: (1) access to a larger private training set, and (2) access to a public image dataset
from a different distribution (some works also consider access to public unlabeled data from the
same distribution as the private data [193, 196, 291]).

6.4.1 Improving Privacy by Collecting More Data

We first analyze the benefits of additional private labeled data on the utility of private models. Since
the privacy budget consumed by DP-SGD scales inversely with the size of the training data N ,
collecting more data allows either to train for more steps, or to lower the amount of noise added per
step—for a fixed DP budget ε.

Experimental setup. To obtain a larger dataset comparable to CIFAR-10, we use an additional
500K images from the Tiny Images dataset [249],7 which were collected and labeled by Carmon et al.
[33] using a pre-trained CIFAR-10 classifier8 (see [33, Appendix B.6] for details on the selection
process for this dataset).We create datasets of size N ∈ {10K, 25K, 50K, 100K, 250K, 550K} by
taking subsets of this larger dataset. We only use the data of Carmon et al. [33] to complement the
CIFAR-10 dataset when N > 50K. As noted by Carmon et al. [33], the additional 500K images do
not entirely match the distribution of CIFAR-10. Nevertheless, we find that training our classifiers
without privacy on augmented datasets of size N > 50K does not negatively impact the test accuracy
on CIFAR-10.

For each training set size, we re-train our models with a hyper-parameter search. To limit
computational cost, and informed by our prior experiments, we fix all parameters except for the
learning rate and number of epochs (normalized by the size of the original CIFAR-10 data). When
applying Data Normalization to ScatterNet features, we compute the per-channel statistics only
over the original CIFAR-10 samples, and compute the privacy guarantees of PrivDataNorm using
the Rényi DP analysis of the sampled Gaussian mechanism [171, 269]. The list of hyper-parameters
is in the table blow.

7The full Tiny Images dataset was recently withdrawn by its curators, following the discovery of a large number
of offensive class labels [204]. The subset collected by Carmon et al. [33] contains images that most closely match the
original CIFAR-10 labels, and is thus unlikely to contain offensive content.

8The privacy guarantees obtained with this dataset could be slightly overestimated, as the pseudo-labels of Carmon
et al. [33] are obtained using a model pre-trained on CIFAR-10, thus introducing dependencies between private data
points.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 125

Parameter Value for dataset of size N
DP guarantee (ε, δ) (3, 1/2N)
Gradient norm C 0.1
Momentum 0.9
Batch size B 8192
Learning rate η {1/8, 1/4, 1/2, 1, 2} · 8192/512

Epochs T {15, 30, 60, 120} · 50000/N

Data Norm. params (C1, C2, σnorm) (1, 1.5, 8)

Results. The optimal values we found for these parameters are given in the table below.

ScatterNet+Linear ScatterNet+CNN CNN

N Epochs T Learning rate η Epochs T Learning rate η Epochs T Learning rate η
10K 30 1/8 60 1/8 30 1/8

25K 30 1/4 60 1/8 60 1/8

50K 60 1/4 60 1/4 60 1/4

100K 60 1/2 120 1/4 120 1/4

250K 120 1/2 120 1 120 1
550K 120 1 120 1 120 1

As we increase the dataset size, we obtain better accuracy by training for more steps and with
higher learning rates. Figure 6.4 reports the final accuracy for these best-performing models.

We find that we need about an order-of-magnitude increase in the size of the private training
dataset in order for end-to-end CNNs to outperform ScatterNet features. As shown above, larger
datasets allow DP-SGD to be run for more steps at a fixed privacy budget and noise level (as also ob-
served in [166])—thereby overcoming the slow convergence rate we uncovered in Section 6.3. While
the increased sample complexity of private deep learning might be viable for “internet-scale” appli-
cations (e.g., language modeling across mobile devices), it is detrimental for sensitive applications
with more stringent data collection requirements, such as in healthcare.

6.4.2 Transfer Learning: Better Features from Public Data

Transfer learning is a natural candidate for privacy-preserving computer vision, as features learned
on public image data often significantly outperform handcrafted features [210]. We consider two
transfer learning settings. The first transfers from CIFAR-100 to CIFAR-10, where the labeled
CIFAR-100 data is assumed public. The second transfer from public unlabeled ImageNet to CIFAR-
10.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 126

10K 25K 50K 100K 250K 550K

Training Set Size N

40

50

60

70

80

T
es

t
A

cc
ur

ac
y

(%
)

ScatterNet+Linear
ScatterNet+CNN
CNN

Figure 6.4: Trade-off between model accuracy and the size of the training set. Shows the
CIFAR-10 test accuracy for a training set of size N and a DP budget of (ε = 3, δ = 1/2N). For
N > 50K, we augment CIFAR-10 with pseudo-labeled Tiny Images collected by Carmon et al. [33].

Experimental Setup. We use a ResNeXt-29 [275] model pre-trained on CIFAR-100,9 and a
ResNet-50 model trained on unlabeled ImageNet [61] using SimCLRv2 [43].10

To train private linear classifiers on CIFAR-10, we first extract features from the penultimate
layer of the above pre-trained models. For the ResNeXt model, we obtain features of dimension
1024, and for the SimCLRv2 ResNet, we obtain features of dimension 4096. We then use DP-SGD
with a similar setup as for the linear ScatterNet classifiers, except that we do not normalize the
extracted features. We also target a tighter privacy budget of (ε = 2, δ = 10−5). We then run a
hyper-parameter search as listed in the table below. We further report the set of hyper-parameters
that resulted in the maximal accuracy for the targeted privacy budget of (ε = 2, δ = 10−5).

Parameter Values Best for ResNeXt Best for SimCLRv2
DP guarantee (ε, δ) (2, 10−5) - -
Gradient norm C 0.1 - -
Momentum 0.9 - -
Batch size B {512, 1024, . . . , 16384} 2048 1024
Learning rate η {1/2, 1, 2, 4} · B/512 2 · 2048/512 2 · 1024/512

Epochs T {15, 25, 40} 40 40

Results. Figure 6.5 shows the best test accuracy achieved for each DP budget, averaged across
five runs.

With features transferred from the CIFAR-100 ResNeXt model, a non-private linear model
trained on transferred features achieves 84% accuracy on CIFAR-10. With DP-SGD, we reach
an accuracy of 80.0% at a budget of (ε = 2, δ = 10−5), a significant improvement over prior work for

9https://github.com/bearpaw/pytorch-classification. Accessed 2021-6-22.
10https://github.com/google-research/simclr. Accessed 2021-6-22.

https://github.com/bearpaw/pytorch-classification
https://github.com/google-research/simclr

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 127

0.5 1.0 1.5 2.0

ε-DP

60

70

80

90

100

T
es

t
A

cc
ur

ac
y

(%
)

92.7%

80.0%

SimCLRv2 (unlabeled ImageNet)

ResNeXt (labeled CIFAR-100)

Figure 6.5: Privacy-utility tradeoffs for transfer learning on CIFAR-10. We fine-tune linear
models on features from a ResNeXt model trained on CIFAR-100, and from a SimCLR model trained
on unlabeled ImageNet.

the same setting and privacy budget, e.g., 67% accuracy in [1] and 72% accuracy in [197]. The large
gap between our results and prior work is mainly attributed to a better choice of source model (e.g.,
the transfer learning setup in [197] achieves 75% accuracy on CIFAR-10 in the non-private setting).
Mirroring the work of Kornblith et al. [139] on non-private transfer learning, we thus find that the
heuristic rule “better models transfer better” also holds with differential privacy.

With the features transferred from unlabeled ImageNet with SimCLRv2, a non-private linear
model achieves 95% accuracy on CIFAR-10 (using labeled ImageNet data marginally improves non-
private transfer learning to CIFAR-10 [42]). With DP-SGD, we train a linear model to 92.7%
accuracy for a DP budget of (ε = 2, δ = 10−5).

6.5 Additional Experiments

6.5.1 On the Effect of Batch Sizes in DP-SGD

In this section, we revisit the question of the selection of an optimal batch size for DP-SGD. In
their seminal work, Abadi et al. [1] already investigated this question, and noted that the choice of
batch size can have a large influence on the privacy-utility tradeoff. They empirically found that
for a dataset of size N , a batch size of size approximately

√
N produced the best results. However,

their experiments measured the effect of the batch size while keeping other parameters, including
the noise multiplier σ and the learning rate η, fixed.

When training without privacy, it has been shown empirically that the choice of batch size has
little effect on the convergence rate of SGD, as long as the learning rate η is scaled linearly with the
batch size [97]. Hereafter, we argue formally and demonstrate empirically that if we use a linear
learning rate scaling, and fix the number of training epochs T for a target privacy budget ε, then
the choice of batch size also has a minimal influence on the performance of DP-SGD.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 128

We first consider the effect of the sampling rate B/N on the noise scale σ required to attain a
fixed privacy budget of ε after T epochs. There is no known closed form expression for σ, so it is
usually estimated numerically. We empirically establish the following claim, and verify numerically
that it holds for our setting in Figure 6.6:

Claim 6.6. Given a fixed DP budget (ε, δ) to be reached after T epochs, the noise scale σ as a
function of the sampling rate B/N is given by σ(B/N) ≈ c ·

√
B/N, for some constant c ≥ 0.

2−7 2−6 2−5 2−4 2−3 2−2 2−1 1

Sample Rate B/N

2

4

8

16
N

oi
se

S
ca

le
σ Numerical estimate

σ = 13
√
B/N

Figure 6.6: Noise scale as a function of the sample rate. Plots the noise scale σ for DP-SGD
that results in a privacy guarantee of (ε = 3, δ = 10−5) after 60 training epochs, for different batch
sampling rates B/N.

Given this relation between batch size and noise scale, we proceed with a similar analysis as
in [97], for the case of DP-SGD. Given some initial weight θt, performing k steps of DP-SGD with
clipping norm C = 1, batch size B, learning rate η and noise scale σ yields:

θt+k = θt − η
∑
j<k

1
B

(∑
x∈Bt+j

g̃t+j(x) +N (0, σ2I)
)

=
(
θt − η

1
B

∑
j<k

∑
x∈Bt+j

g̃t+j(x)
)

+N
(

0, kη
2σ2

B2 I
)

If we instead take a single step of DP-SGD with larger batch size kB, a linearly scaled learning rate
of kη, and an adjusted noise scale σ̃ =

√
kσ (by Claim 6.6), we get:11

θt+1 = θt − kη
1
kB

(∑
j<k

∑
x∈Bt+j

g̃t(x) +N (0, σ̃2I)
)

=
(
θt − η

1
B

∑
j<k

∑
x∈Bt+j

g̃t(x)
)

+N
(

0, kη
2σ2

B2 I
)

Thus, we find that the total noise in both updates is identical. Under the same heuristic assumption
11We make a small simplification to our analysis here and assume that one batch of DP-SGD sampled with selection

probability kB
N

is identical to k batches sampled with selection probability B
N
.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 129

as in [97] that g̃t(x) ≈ g̃t+j(x) for all j < k, the two DP-SGD updates above are thus similar. This
analysis suggests that as in the non-private case [97], increasing the batch size and linearly scaling
the learning rate should have only a small effect on a model’s learning curve.

We now verify this claim empirically. We follow the experimental setup in Section 6.2, and set
a privacy budget of (ε = 3, δ = 10−5) to be reached after a fixed number of epochs T . For different
choices of batch size B, we numerically compute the noise scale σ that fits this “privacy schedule”.
For the initial batch size of B0 = 512, we select a base learning rate η that maximizes test accuracy
at epoch T . As we increase the batch size to B = kB0, we linearly scale the learning rate to kη.
The concrete parameters are given below:

Epochs T Batch size B Learning rate η

MNIST 40 {512, 1024, 2048, 4096} 1/2 · B/512

Fashion-MNIST 40 {512, 1024, 2048, 4096} 1 · B/512

CIFAR-10 60 {512, 1024, 2048, 4096} 1/4 · B/512

As we can see in Figure 6.7, the training curves for CNNs trained with DP-SGD are indeed near
identical across a variety of batch sizes.

0 10 20 30 40

Epochs

80

85

90

95

100

T
ra

in
A

cc
ur

ac
y

(%
)

Batch Size
512
1024
2048
4096

(a) MNIST

0 10 20 30 40

Epochs

60

70

80

90

T
ra

in
A

cc
ur

ac
y

(%
)

(b) Fashion-MNIST

0 20 40 60

Epochs

20

30

40

50

60

70

T
ra

in
A

cc
ur

ac
y

(%
)

(c) CIFAR-10

Figure 6.7: Convergence rate of DP-SGD for different batch sizes. Plots the training
accuracy for a fixed targeted privacy budget of (ε = 3, δ = 10−5) after T = 40 or T = 60 epochs,
and linear scaling of the learning rate η · B/512.

6.5.2 Comparing DP-SGD and Privacy Amplification by Iteration

While DP-SGD is the algorithm of choice for differentially private non-convex learning, it is unclear
why it should be the best choice for learning private linear models. Indeed, starting with the work
of Chaudhuri et al. [34], there have been many other proposals of algorithms for private convex
optimization with provable utility guarantees, e.g., [11, 78, 133]. Yet, Yu et al. [282] show that DP-
SGD can achieve higher utility than many of these approaches, both asymptotically and empirically.

Here, we take a closer look at the “Privacy Amplification by Iteration” work of [78]. Feldman
et al. [78] observe that DP-SGD guarantees differential privacy for every gradient update step. Under

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 130

the assumption that intermediate model updates can be hidden from the adversary, they propose
a different analysis of DP-SGD for convex optimization problems that has a number of conceptual
advantages. First, the algorithm of Feldman et al. [78] does not require the training indices selected
for each batch Bt do be hidden from the adversary. Second, their approach can support much
smaller privacy budgets than DP-SGD.

However, we show that these benefits come at a cost in practice: for the range of privacy budgets
we consider in this work, DP-SGD requires adding less noise than Privacy Amplification by Iteration
(PAI). To compare the two approaches, we proceed as follows: We analytically compute the noise
scale σ that results in a privacy guarantee of (ε, δ = 10−5) after 10 training epochs with a batch
sampling rate of 512/50000.12 Figure 6.8 shows that DP-SGD requires adding less noise, except for
large privacy budgets (ε > 40), or very small ones (ε < 0.2). In the latter case, both algorithms
require adding excessively large amounts of noise. We observe a qualitatively similar behavior for
other sampling rates.

For completeness, we evaluate the PAI algorithm of Feldman et al. [78] for training linear Scatter-
Net classifiers on CIFAR-10. We evaluate a broader range of hyper-parameters, including different
clipping thresholds C ∈ {0.1, 1, 10} (PAI clips the data rather than the gradients), a wider range of
batch sizes B ∈ {32, 64, . . . , 2048}, and a wider range of base learning rates η ∈ {2−3, 2−2, . . . , 23}.
We find that for privacy budgets 1 ≤ ε ≤ 3, the optimal hyper-parameters for PAI and DP-SGD
are similar, but the analysis of PAI requires a larger noise scale σ. As a result, PAI performs worse
than DP-SGD, as shown in Figure 6.9.

10−1 100 101 102

ε-DP

100

102

N
oi

se
S

ca
le
σ DP-SGD

PAI

Figure 6.8: Comparison of noise scales for
DP-SGD and Privacy Amplification by It-
eration. Plots the noise scale σ required for a
privacy guarantee of (ε, δ = 10−5) after 10 train-
ing epochs with batch sampling rate 512/50000.
Privacy Amplification by Iteration (PAI) [78]
requires less noise than DP-SGD only for very
small or very large privacy budgets.

1 2 3

ε-DP

40

50

60

70

T
es

t
A

cc
ur

ac
y

(%
)

DP-SGD
PAI

Figure 6.9: Privacy-accuracy tradeoffs for
DP-SGD [1] and Privacy Amplification by
Iteration (PAI) [78]. Shows the maximum
accuracy achieved for each privacy budget when
training a private linear ScatterNet classifier on
CIFAR-10, averaged over five runs.

12The guarantees of Privacy Amplification by Iteration apply unevenly to the elements of the training data. We
choose the noise scale so that at least 99% of the data elements enjoy (ε, δ)-DP.

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 131

6.5.3 DP-SGD With Poisson Sampling

The analysis of DP-SGD [1, 171] assumes that each batch Bt is created by independently selecting
each training sample with probability B/N. This is in contrast to typical implementations of SGD,
where the training data is randomly shuffled once per epoch, and divided into successive batches
of size exactly B. The latter “random shuffle” approach has been used in most implementations
of DP-SGD (e.g., in TensorFlow/privacy13 and Opacus14) as well as in prior work (e.g., [1, 198]),
with the (implicit) assumption that this difference in batch sampling strategies will not affect model
performance. We verify that this assumption is indeed valid in our setting. We re-train the linear
ScatterNet and end-to-end CNN models that achieved the highest accuracy for a DP budget of
(ε = 3, δ = 10−5) (with the best hyper-parameters detailed in Section 6.2.4), using the correct
“Poisson sampling” strategy. The test accuracy of these models (averaged over five runs) are shown
in Table 6.10. For all datasets and models, the two sampling schemes achieve similar accuracy when
averaged over five runs.

Table 6.10: Comparison of DP-SGD with Poisson sampling and random shuffling. Shows
model accuracy for two different batch sampling schemes: (1) Poisson sampling, where a batch is
formed by selecting each data point independently with probability B/N; (2) Random shuffle, where
the training set is randomly shuffled at the beginning of each epoch, and split into consecutive
batches of size B. For both sampling schemes, we report the best test accuracy (in %) at a DP
budget of (ε = 3, δ = 10−5), with means and standard deviations over five runs.

ScatterNet CNN

Dataset Poisson Sampling Random Shuffle Poisson Sampling Random Shuffle

MNIST 98.6± 0.1 98.7± 0.0 98.0± 0.1 98.1± 0.0
Fashion-MNIST 89.6± 0.1 89.7± 0.0 86.1± 0.2 86.0± 0.1
CIFAR-10 66.8± 0.2 67.0± 0.0 59.0± 0.4 59.2± 0.1

6.6 Conclusion and Open Problems

We have demonstrated that differentially private learning benefits from “handcrafted” features that
encode priors on the learning task’s domain. In particular, we have shown that private ScatterNet
classifiers outperform end-to-end CNNs on MNIST, Fashion-MNIST and CIFAR-10. We have further
found that handcrafted features can be surpassed when given access to more data, either a larger
private training set, or a public dataset from a related domain. In addition to introducing strong
baselines for evaluating future improvements to private deep learning and DP-SGD, our results
suggest a number of open problems and directions for future work:

13https://github.com/tensorflow/privacy. Accessed 2021-6-22.
14https://github.com/pytorch/opacus. Accessed 2021-6-22.

https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus

CHAPTER 6. DIFFERENTIALLY PRIVATE LEARNING WITH BETTER FEATURES 132

Improving DP by accelerating convergence. Our analysis in Section 6.3 shows that a limiting
factor of private deep learning is the slow convergence rate of end-to-end deep models. While the
existing literature on second-order optimization for deep learning has mainly focused on improving
the overall wall-clock time of training, it suffices for DP to reduce the number of private training
steps—possibly at an increase in computational cost.

Federated learning. While we have focused on a standard centralized setting for DP, our tech-
niques can be extended to decentralized training schemes such as Federated Learning [19, 128, 165].
DP has been considered for Federated Learning [86, 166], but has also been found to significantly
degrade performance in some settings [284].

Handcrafted features for ImageNet and non-vision domains. To our knowledge, there
have not yet been any attempts to train ImageNet models with DP-SGD, partly due to the cost of
computing per-sample gradients. While linear classifiers are unlikely to be competitive on ImageNet,
handcrafted features can also help private learning by accelerating the convergence of CNNs, as
we have shown in Figure 6.1. Notably, Oyallon et al. [188] match the (non-private) accuracy of
AlexNet [142] on ImageNet with a small six-layer CNN trained on ScatterNet features. Another
interesting direction is to extend our results to domains beyond vision, e.g., with handcrafted features
for text [162] or speech [3].

Chapter 7

Slalom: Faster Private Inference
With Trusted Hardware

Once a machine learning (ML) model has been trained (possibly with differential privacy as in Chap-
ter 6), it is routinely outsourced to a remote server to compute client predictions. Prominent exam-
ples include cloud-based ML APIs (e.g., a speech-to-text application that consumes user-provided
data) or general ML-as-a-Service platforms. The outsourcing of these ML services raises natural
concerns for the integrity and privacy of the client’s predictions.

Trusted Execution Environments (TEEs), e.g, Intel SGX [164], ARM TrustZone [2] or Sanc-
tum [56] offer a pragmatic solution to this problem. TEEs use hardware and software protections
to isolate sensitive code from other applications, while attesting to its correct execution. Running
outsourced ML computations in TEEs provides remote clients with strong privacy and integrity
guarantees.

For outsourced ML computations, TEEs outperform pure cryptographic approaches (e.g, [87,
88, 126, 174]) by multiple orders of magnitude. At the same time, the isolation guarantees of TEEs
still come at a steep price in performance, compared to untrusted alternatives (i.e., running ML
models on contemporary hardware with no security guarantees). For instance, Intel SGX [116]
incurs significant overhead for memory intensive tasks [104, 186], has difficulties exploiting multi-
threading, and is currently limited to desktop CPUs that are outmatched by untrusted alternatives
(e.g., GPUs or server CPUs). Thus, our thesis is that for modern ML workloads, TEEs will be at
least an order of magnitude less efficient than the best available untrusted hardware.

This leads us to the main question of this chapter:

How can we most efficiently leverage TEEs for secure machine learning?

This was posed by Stoica et al. [242] as one of nine open research problems for system challenges
in AI. A specific challenge they raised is that of appropriately splitting ML computations between

133

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE134

trusted and untrusted components, to increase efficiency as well as security by minimizing the
Trusted Computing Base.

In this chapter, we explore a novel approach to this challenge, wherein a neural network’s execu-
tion is partially outsourced from a TEE to a co-located, untrusted but faster device. Our approach,
inspired by the verifiable ASICs of Wahby et al. [267], differs from cryptographic ML outsourcing.
In our case, work is delegated between two co-located parties, thus allowing for highly interactive—
yet conceptually simpler—outsourcing protocols with orders-of-magnitude better efficiency. Our ap-
proach also departs from prior systems that execute neural networks fully in a TEE [45, 103, 111, 183].

The main observation that guides our approach is that matrix multiplication—the main bot-
tleneck in neural networks—admits a concretely efficient verifiable outsourcing scheme known as
Freivalds’ algorithm [82], which can also be turned private in our setting. Our TEE selectively
outsources these CPU intensive steps to a fast untrusted co-processor (and runs the remaining steps
itself) therefore achieving much better performance than running the entire computation in the
enclave, without compromising security.

We propose Slalom, a framework for efficient neural network inference in any trusted execution
environment (e.g., SGX or Sanctum). To evaluate Slalom, we build a lightweight neural network
library for Intel SGX, which may be of independent interest. Our library allows for outsourcing all
linear layers to an untrusted GPU without compromising integrity or privacy.

We formally prove Slalom’s security, and evaluate it on multiple canonical ML models with a vari-
ety of computational costs—VGG16 [236], MobileNet [109], and ResNets [105]. Compared to running
all computations in SGX, outsourcing linear layers to an untrusted GPU increases throughput (as
well as energy efficiency) by 6× to 20× for verifiable inference, and by 4× to 11× for verifiable and
private inference. Finally, we discuss open challenges towards efficient verifiable training of neural
networks in TEEs.

7.1 Background

7.1.1 Problem Setting

We consider an outsourcing scheme between a client C and a server S, where S executes a classifier
f(x) : Rd → [C] on data provided by C. The classifier can either belong to the user (e.g., as in
some ML-as-a-service platforms), or to the server (e.g., as in a cloud-based ML API). Depending
on the application, this scheme should satisfy one or more of the following security properties (see
Section 7.2 for formal definitions):

• t-Integrity: For any S and input x, the probability that a user interacting with S does not
abort (i.e., output ⊥) and outputs an incorrect value ỹ 6= f(x) is less than t.

• Privacy: The server S learns no information about the user’s input x.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE135

• Model privacy: If the model f is provided by the user, S learns no information about f
(beyond e.g., its approximate size). If f belongs to the server, C learns no more about f than
what is revealed by y = f(x).1

7.1.2 Trusted Execution Environments (TEEs), Intel SGX, and a Strong
Baseline

Trusted Execution Environments (TEE) such as Intel SGX, ARM TrustZone or Sanctum [56] enable
execution of programs in secure enclaves. Hardware protections isolate computations in enclaves
from all programs on the same host, including the operating system. Enclaves can produce remote
attestations—digital signatures over an enclave’s code—that a remote party can verify using the
manufacturer’s public key. Our experiments with Slalom use hardware enclaves provided by Intel
SGX.

Details on Intel SGX. SGX enclaves isolate execution of a program from all other processes on
a same host, including a potentially malicious OS. In particular, enclave memory is fully encrypted
and authenticated. When a word is read from memory into a CPU register, a Memory Management
Engine handles the decryption [55].

While SGX covers many software and hardware attack vectors, there is a large and prominent
class of side-channel attacks that it explicitly does not address [55, 254]. In the past years, many
attacks have been proposed, with the goal of undermining privacy of enclave computations [20, 96,
147, 173, 263, 278]. Most of these attacks rely on data dependent code behavior in an enclave (e.g.,
branching or memory access) that can be partially observed by other processes running on the same
host. These side-channels are a minor concern for the neural network computations considered in
this paper, as the standard computations in a neural network are data-oblivious (i.e., the same
operations are applied regardless of the input data) [183].

The recent Spectre attacks on speculative execution [135] also prove damaging to SGX (as well as
to most other processors), as recently shown [36, 59, 264]. Mitigations for these side-channel attacks
are being developed [40, 117, 232, 233] but a truly secure solution might require some architectural
changes, e.g., as in the proposed Sanctum processor [56].

We refrain from formally modeling SGX’s (or other TEE’s) security in this paper, as Slalom
is mostly concerned with outsourcing protocols wherein the TEE acts as a client. We refer the
interested reader to [80, 200, 245] for different attempts at such formalisms.

A baseline for outsourcing ML with TEEs. TEEs offer an efficient solution to the ML out-
sourcing problem:

1For this zero-knowledge guarantee to be meaningful in our context, S would first commit to a specific model,
and then convince C that this model was correctly evaluated on her input, without revealing anything else about the
model.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE136

The server runs an enclave that initiates a secure communication with C and evaluates
a model f on C’s input data.

This simple scheme (which we implemented in SGX, see Section 7.4) outperforms cryptographic
ML outsourcing protocols by 2-3 orders of magnitude (albeit under a different trust model). See
Table 7.1 for a comparison to two representative works, SafetyNets [87] and Gazelle [126].

Yet, SGX’s security comes at a performance cost, and there remains a large gap between TEEs
and untrusted devices. For example, current SGX CPUs are limited to 128 MB of Processor Reserved
Memory (PRM) [55] and incur severe paging overheads when exceeding this allowance [186]. We also
failed to achieve noticeable speed ups for multi-threaded neural network evaluations in SGX enclaves
(see Section 7.4.6). For neural network computations, current SGX enclaves thus cannot compete—
in terms of performance or energy efficiency (see section 7.4.4, A note on energy efficiency)—with
contemporary untrusted hardware, such as a GPU or server CPU.

In this work, we treat the above simple (yet powerful) TEE scheme as a baseline, and identify
settings where we can still improve upon it. We will show that our system, Slalom, substantially
outperforms this baseline when the server has access to the model f (e.g., f belongs to S as in
cloud ML APIs, or f is public). Slalom performs best for verifiable inference (the setting considered
in SafetyNets [87]). If the TEE can run some offline data-independent preprocessing (e.g., as in
Gazelle [126]), Slalom also outperforms the baseline for private (and verifiable) outsourced compu-
tations in a later online phase. Such a two-stage approach is viable if user data is sent at irregular
intervals yet has to be processed with high throughput when available.

Performance comparison of neural network outsourcing schemes. We provide a brief
overview of the outsourcing approaches compared in Table 7.1. Our baseline runs a neural network
in a TEE (a single-threaded Intel SGX enclave) and can provide all the security guarantees of an
ML outsourcing scheme. On a high-end GPU (an Nvidia TITAN XP), we achieve over 50× higher
throughput but no security. For example, for MobileNet, the enclave evaluates 16 images/sec and
the GPU 900 images/sec (56× higher).

SafetyNets [87] and Gazelle [126] are two representative works that achieve respectively integrity
and privacy using purely cryptographic approaches (without a TEE). SafetyNets does not hide the
model from either party, while Gazelle leaks some architectural details to the client. The crypto-
graphic techniques used by these systems incur large computation and communication overheads
in practice. The largest model evaluated by SafetyNets is a 4-layer TIMIT model with quadratic
activations which runs at about 13 images/sec (on a notebook CPU). In our baseline enclave, the
same model runs at over 3,500 images/sec. The largest model evaluated by Gazelle is an 8-layer
CIFAR-10 model. In the enclave, we can evaluate 450 images/sec whereas Gazelle evaluates a single
image in 3.5 sec with 300MB of communication between client and server.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE137

Table 7.1: Security guarantees and performance (relative to baseline) of different ML
outsourcing schemes.

Model Privacy

Approach TEE Integrity Privacy
w.r.t.
Server

w.r.t.
Client

Throughput
(relative)

SafetyNets [87] - # # # ≤ 1/200 ×
Gazelle [126] - # * # G ≤ 1/1000 ×
Secure baseline (run model in TEE) 3 1×
Insecure baseline (run model on GPU) - # # # G ≥ 50×
Slalom (Ours) 3 * # 4× - 20×

* With an offline preprocessing phase.

7.1.3 Outsourcing Outsourced Neural Networks and Freivalds’ Algorithm

Our idea for speeding up neural network inference in TEEs is to further outsource work from the
TEE to a co-located faster untrusted processor. Improving upon the above baseline thus requires
that the combined cost of doing work on the untrusted device and verifying it in the TEE be cheaper
than evaluating the full model in the TEE.

Wahby et al. [267, 268] aim at this goal for arbitrary computations outsourced between co-
located ASICs. The generic non-interactive proofs they use for integrity are similar to those used in
SafetyNets [87], which incur overheads that are too large to warrant outsourcing in our setting (e.g.,
Wahby et al. [267] find that the technology gap between trusted and untrusted devices needs to be
of over two decades for their scheme to break even). Similarly for privacy, standard cryptographic
outsourcing protocols (e.g., [126]) are unusable in our setting as simply running the computation in
the TEE is much more efficient (see Table 7.1).

To overcome this barrier, we design outsourcing protocols tailored to neural networks, leveraging
two insights:

1. In our setting, the TEE is co-located with the server’s faster untrusted processors, thus widening
the design space to interactive outsourcing protocols with high communication but better
efficiency.

2. The TEE always has knowledge of the model and can selectively outsource part of the neural
network evaluation and compute others—for which outsourcing is harder—itself.

Neural networks are a class of functions that are particularly well suited for selective outsourcing.
Indeed, non-linearities—which are hard to securely outsource (with integrity or privacy)—represent
a small fraction of the computation in a neural network so we can evaluate these in the TEE (e.g., for
VGG16 inference on a single CPU thread, about 1.5% of the computation is spent on non-linearities).

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE138

In contrast, linear operators—the main computational bottleneck in neural networks—admit for a
conceptually simple yet concretely efficient secure delegation scheme, described below.

Integrity. We verify integrity of outsourced linear layers using variants of an algorithm by Freivalds
[82].

Lemma 7.1 (Freivalds). Let A,B and C be n× n matrices over a field F and let s be a uniformly
random vector in Sn, for S ⊆ F. Then, Pr[Cs = A(Bs) | C 6= AB] = Pr[(C−AB)s = 0 | (C−AB) 6=
0] ≤ 1/|S| .

The randomized check requires 3n2 multiplications, a significant reduction (both in concrete
terms and asymptotically) over evaluating the product directly. The algorithm has no false negatives
and trivially extends to rectangular matrices. Independently repeating the check k times yields
soundness error 1/|S|k.

Privacy. Input privacy for outsourced linear operators could be achieved with linearly homomor-
phic encryption, but the overhead (see the micro-benchmarks in [126]) is too high to compete with
our baseline (i.e., computing the function directly in the TEE would be faster than outsourcing it
over encrypted data).

We instead propose a very efficient two-stage approach based on symmetric cryptography, i.e., an
additive stream cipher. Let g : Fm → Fn be a linear function over a field F. In an offline phase, the
TEE generates a stream of one-time-use pseudorandom elements r ∈ Fm, and pre-computes u = g(r).
Then, in the online phase when the remote client sends an input x, the TEE computes Enc(x) = x+r
over Fm (i.e., a secure encryption of x with a stream cipher), and outsources the computation of
g(Enc(x)) to the faster processor. Given the result g(Enc(x)) = g(x + r) = g(x) + g(r) = g(x) + u,
the TEE recovers g(x) using the pre-computed u.

Communication. Using Freivalds’ algorithm and symmetric encryption for each linear layer in
a neural network incurs high interaction and communication between the TEE and untrusted co-
processor (e.g., over 50MB per inference for VGG16, see Table 7.3). This would be prohibitive if
they were not co-located. There are protocols with lower communication than repeatedly using
Freivalds’ ([79, 87, 248]). Yet, these incur a high overhead on the prover in practice and are thus
not suitable in our setting.

7.2 Formal Security Definitions

We define a secure outsourcing scheme, between a client C and a server S, for a classifier f(x) :
Rd → [C] from some family F (e.g., all neural networks of a given size). We first assume that the
model f is known to both C and S:

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE139

Definition 7.2 (Secure Outsourcing Schemes). A secure outsourcing scheme consists of an offline
preprocessing algorithm Preproc, as well as an interactive online protocol Outsource〈C,S〉, defined
as follows:

• st ← Preproc(f, 1λ): The preprocessing algorithm is run by C and generates some data-
independent state st (e.g., cryptographic keys or precomputed values to accelerate the online
outsourcing protocol.)

• [C] ∪ {⊥} ← Outsource〈C(f, x, st),S(f)〉: The online outsourcing protocol is initiated by C
with inputs (f, x, st). At the end of the protocol, C either outputs a value y ∈ [C] or aborts
(i.e., C outputs ⊥).

The properties that we may require from a secure outsourcing scheme are:

• Correctness: For any f ∈ F and x ∈ Rd, running st← Preproc(f, 1λ) and
y ← Outsource〈C(f, x, st),S(f)〉 yields y = f(x).

• t-Integrity: For any f ∈ F , input x ∈ X and probabilistic polynomial-time adversary S∗,
the probability that ỹ = Outsource〈C(f, x, st),S∗(f)〉 and ỹ /∈ {f(x),⊥} is less than t.

• Input privacy: For any f ∈ F , inputs x, x′ ∈ Rd and probabilistic poly-time adversary S∗,
the views of S∗ in Outsource〈C(f, x, st),S∗(f)〉 and Outsource〈C(f, x′, st),S∗(f)〉 are compu-
tationally indistinguishable.

• Efficiency: The online computation of C in Outsource should be less than the cost for C to
evaluate f ∈ F .

Model privacy. In some applications a secure outsourcing scheme may also require to hide the
model f from either S or C (in which case that party would obviously not take f as input in the
above scheme).

Privacy with respect to an adversarial server S∗ (which Slalom does not provide), is defined as
the indistinguishability of S∗’s views in Outsource〈C(f, x, st),S∗〉 and Outsource〈C(f ′, x, st),S∗〉 for
any f, f ′ ∈ F .

As noted in Section 7.1.1, a meaningful model-privacy guarantee with respect to C requires that
S first commit to a specific classifier f , and then convinces C that her outputs were produced with
the same model as all other clients’. We refer the reader to Canetti et al. [25] for formal definitions
for such commit-and-prove schemes, and to Tramèr et al. [254] who show how to trivially instantiate
them using a TEE.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE140

7.3 Slalom

We introduce Slalom, a three-step approach for outsourcing neural networks from a TEE to an
untrusted but faster device: (1) Inputs and weights are quantized and embedded in a field F; (2)
Linear layers are outsourced and verified using Freivalds’ algorithm; (3) Inputs of linear layers are
encrypted with a pre-computed pseudorandom stream to guarantee privacy. Figure 7.1 shows two
Slalom variants, one to achieve integrity, and one to also achieve privacy.

We focus on feed-forward networks with fully connected layers, convolutions, separable convolu-
tions, pooling layers and activations. Slalom can be extended to other architectures (e.g., residual
networks, see Section 7.4.4).

7.3.1 Quantization

The techniques we use for integrity and privacy (Freivalds’ algorithm and stream ciphers) work over
a field F. We thus quantize all inputs and weights of a neural network to integers, and embed these
integers in the field Zp of integers modulo a prime p (where p is larger than all values computed in
a neural network evaluation, so as to avoid wrap-around).

As in [102], we convert floating point numbers x to a fixed-point representation as x̃ = FP(x; l) :=
round(2l · x). For a linear layer with kernel W and bias b, we define integer parameters W̃ =
FP(W, l), b̃ = FP(b, 2l). After applying the layer to a quantized input x̃, we scale the output by 2−l

and re-round to an integer.
For efficiency reasons, we perform integer arithmetic using floats (so-called fake quantization),

and choose p < 224 to avoid loss of precision (we use p = 224 − 3). For the models we evaluate,
setting l = 8 for all weights and inputs ensures that all neural network values are bounded by 224,
with less than a 0.5% drop in accuracy (see Table 7.3). When performing arithmetic modulo p, we
use double-precision floats, to reduce the number of modular reductions required.

In more detail, to compute inner products, we first cast elements to doubles (as a single multi-
plication in Zp would exceed the range of integers exactly representable as floats). Single or double
precision floats are preferable to integer types on Intel architectures due to the availability of much
more efficient SIMD instructions, at a minor reduction in the range of exactly representable integers.

In our evaluation, we target a soundness error of 2−40 for each layer. This leads to a tradeoff
between the number of repetitions k of Freivalds’ check, and the size of the set S from which we draw
random values. One check with |S| = 240 is problematic, as multiplying elements in Zp and S can
exceed the range of integers exactly representable as doubles (253). With k = 2 repetitions, we can
set S = [−219, 219]. Multiplications are then bounded by 224+19 = 243, and we can accumulate 210

terms in the inner-product before needing a modular reduction. In practice, we find that increasing
k further (and thus reducing |S|) is not worthwhile, as the cost of performing more inner products
trumps the savings from reducing the number of modulos.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE141

Slalom with integrity
TEE(f, x(1)) S(f)

x(1)

−−→
for i ∈ [1, n] do
y(i) ← x(i)W (i)

y(1)...y(n)

←−−−−−− x(i+1) ← σ(y(i))
for i ∈ [1, n] do
assert Freivalds(y(i), x(i),W (i))
x(i+1) ← σ(y(i))

return y(n)

Slalom with integrity & privacy
TEE(f, x(1)) S(f)
Preproc : for i ∈ [1, n] do
r(i)←$Fmi

u(i) ← r(i)W (i)

for i ∈ [1, n] do

x̃(i) ← x(i) + r(i) x̃(i)

−−→
ỹ(i)

←−− ỹ(i) ← x̃(i)W (i)

y(i) ← ỹ(i) − u(i)

assert Freivalds(y(i), x(i),W (i))
x(i+1) ← σ(y(i))

return y(n)

Figure 7.1: The Slalom algorithms for verifiable and private neural network inference.
The TEE outsources computation of n linear layers of a model f to the untrusted host server S. Each
linear layer is defined by a matrixW (i) of sizemi×ni and followed by an activation σ. All operations
are over a field F. The Freivalds(y(i), x(i), w(i)) subroutine performs k repetitions of Freivalds’ check
(possibly using precomputed values as in Section 7.3.2). The pseudorandom elements r(i) (we omit
the PRNG for simplicity) and precomputed values u(i) are used only once.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE142

7.3.2 Verifying Common Linear Operators

We now describe Slalom’s approach to verifying the integrity of outsourced linear layers. We sum-
marize this section’s results in Table 7.2.

Common linear layers. Below we describe some common linear operators used in deep neural
networks. For simplicity, we omit additive bias terms, and assume that convolutional operators
preserve the spatial height and width of their inputs. Our techniques easily extend to convolutions
with arbitrary strides, paddings, and window sizes.

A fully-connected layer fFC has kernel W of size (hin × hout). For an input x of dimension hin,
we have fFC(x) = x>W . The cost of the layer is hin · hout multiplications.

A convolutional layer has kernel W of size (k× k× cin × cout). On input x of size (h×w× cin),
fconv(x) = Conv(x;W) produces an output of size (h × w × cout). A convolution can be seen as
the combination of two linear operators: a “patch-extraction” process that transforms the input x
into an intermediate input x′ of dimension (h ·w, k2 · cin) by extracting k× k patches, followed by a
matrix multiplication with W . The cost of this layer is thus k2 · h · w · cin · cout multiplications.

A separable convolution has two kernels, W of size (k × k × cin) and W ′ of size (cin × cout). On
input x of size (h × w × cin), fsep-conv(x) produces an output of size (h × w × cout), by applying
a depthwise convolution fdp-conv(x) with kernel W followed by a pointwise convolution fpt-conv(x)
with kernel W ′.

A depthwise convolution consists of cin independent convolutions with filters of size k×k×1×1,
applied to a single input channel, which requires k2 · h · w · cin multiplications.

A pointwise convolution is simply a matrix product with an input of size (h · w)× cin, and thus
requires h · w · cin · cout multiplications.

Freivalds’ algorithm for batches. The most direct way of applying Freivalds’ algorithm to
arbitrary linear layers of a neural network is by exploiting batching. Any linear layer f(x) from
inputs of size m to outputs of size n can be represented (with appropriate reshaping) as f(x) = x>W

for a (often sparse and implicit) m× n matrix W .
For a batch X of size B, we can outsource f(X) and check that the output Y satisfies f(s>X) =

s>Y , for a random vector s (we are implicitly applying Freivalds to the matrix product XW = Y).
As the batch size B grows, the cost of evaluating f is amortized and the total verification cost is
|X|+ |Y |+ costf multiplications (i.e., we approach one operation per input and output). Yet, as we
show in Section 7.4.4, while batched verification is worthwhile for processors with larger memory, it
is prohibitive in SGX enclaves due to the limited PRM.

For full convolutions (and pointwise convolutions), a direct application of Freivalds’ check is
worthwhile even for single-element batches. For f(x) = Conv(x,W) and purported output y, we
can sample a random vector s of dimension cout (the number of output channels), and check that

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE143

Table 7.2: Complexity (number of multiplications) of evaluating and verifying linear
functions. The layers are “Fully Connected”, ”Convolution”, ”Depthwise Convolution” and ”Point-
wise Convolution”. Each layer f has an input x, output y and kernel W . We assume a batch size of
B ≥ 1. We use the shorthand |x| to denote the number of elements in a vector or matrix x.

Layer |x|, |y| |W| costf (B = 1) Batch verification With preproc.

FC hin,
hout

hin · hout |x| · |y| B · (|x|+ |y|) + costf B · (|x|+ |y|)

Conv h · w · cin,
h · w · cout

k2 · cin · cout |x| · k2 · cout B · (|x|+ |y|)
+ cin · cout + |x| · k2

B · (|x|+ |y|)

Depth. Conv h · w · cin,
h · w · cin

k2 · cin |x| · k2 B · (|x|+ |y|) + costf B · (|x|+ |y|)

Point. Conv h · w · cin,
h · w · cout

cin · cout |x| · cout B ·(|x|+|y|)+cin ·cout B · (|x|+ |y|)

Conv(x,Ws) = ys (with appropriate reshaping). For a batch of inputs X, we can also apply
Freivalds’ algorithm twice to reduce both W and X.

Preprocessing. We now show how to obtain an outsourcing scheme for linear layers that has
optimal verification complexity (i.e., |x| + |y| operations) for single-element batches and arbitrary
linear operators, while at the same time compressing the model’s weights (a welcome property in
our memory-limited TEE model).

We leverage two facts: (1) model weights are fixed at inference time, so part of Freivalds’ check
can be pre-computed; (2) the TEE can keep secrets from the host S, so the random values s can be
re-used across layers or inputs (if we run Freivalds’ check n times with the same secret randomness,
the soundness errors grows at most by a factor n). Our verification scheme with preprocessing
follows from a reformulation of Lemma 7.1:

Lemma 7.3. Let g : Fm → Fn be a linear operator, g(x) := x>W . Let s be uniformly random in
Sn, for S ⊆ F, and let s̃ := ∇gx(s) = Ws. For any x ∈ Fm, y ∈ Fn, we have Pr[y>s = x>s̃ | y 6=
g(x)] ≤ 1/|S| .

The check requires |x| + |y| multiplications, and storage for s and s̃ := Ws (of size |x| and |y|).
To save space, we can reuse the same random s for every layer. The memory footprint of a model is
then equal to the size of the inputs of all its linear layers (e.g., for VGG16 the footprint is reduced
from 550MB to 36MB, see Table 7.3).

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE144

7.3.3 Input Privacy

To guarantee privacy of the client’s inputs, we use precomputed blinding factors for each outsourced
computation, as described in Section 7.1.3. The TEE uses a cryptographic Pseudo Random Num-
ber Generator (PRNG) to generate blinding factors. The precomputed “unblinding factors” are
encrypted and stored in untrusted memory or disk. In the online phase, the TEE regenerates the
blinding factors using the same PRNG seed, and uses the precomputed unblinding factors to decrypt
the output of the outsourced linear layer.

This blinding process incurs several overheads: (1) the computations on the untrusted device
have to be performed over Zp so we use double-precision arithmetic. (2) The trusted and untrusted
processors exchange data in-between each layer, rather than at the end of a full inference pass.
(3) The TEE has to efficiently load precomputed unblinding factors, which requires either a large
amount of RAM, or a fast access to disk (e.g., a PCIe SSD).

Slalom’s security is given by the following results. Let λ be a negligible function (for any integer
c > 0 there exists an integer Nc such that for all x > Nc, |λ(x)| < 1/xc).

Theorem 7.4. Let Slalom be the protocol from Figure 7.1 (right), where f is an n-layer neural
network, and Freivalds’ algorithm is repeated k times per layer with random vectors drawn from
S ⊆ F. Assume all random values are generated using a secure PRNG with security parameter λ.
Then, Slalom is a secure outsourcing scheme for f between a TEE and an untrusted co-processor S
with privacy and t-integrity for t = n/|S|k − λ(λ).

Proof. Let st ← Preproc and Outsource〈TEE(f, x, st),S〉 be the outsourcing scheme defined in
Figure 7.1 (right). We assume that all random values sampled by the TEE are produced by a secure
cryptographically secure pseudorandom number generator (PRNG) (with elements in S ⊆ F for the
integrity-check vectors s used in Freivalds’ algorithm, and in F for the blinding vectors r(i)).

We first consider integrity. Assume that the scheme is run with input x(1) and that the TEE
outputs y(n). We will bound Pr[y(n) 6= f(x(1)) | y(n) 6= ⊥]. By the security of the PRNG, we can
replace the vectors s used in Freivalds’ algorithm by truly uniformly random values in S ⊆ F, via
a simple hybrid argument. For the i-th linear layer, with operator W (i), input x(i) and purported
output y(i), we then have that y(i) 6= x(i)W (i) with probability at most 1/|S|k. By a simple union
bound, we thus have that Pr[y(n) 6= f(x(1))] ≤ n/|S|k − λ(λ). Note that this bound holds even if the
same (secret) random values s are re-used across layers.

For privacy, consider the views of an adversary S∗ when Slalom is run with inputs x and x′.
Again, by the security of the PRNG, we consider a hybrid protocol where we replace the pre-
computed blinding vectors r(i) by truly uniformly random values in F. In this hybrid protocol,
x̃(i) = x(i) + r(i) is simply a “one-time-pad” encryption of x(i) over the field F, so S∗’s views in both
executions of the hybrid protocol are equal (information theoretically). Thus, S∗’s views in both
executions of the original protocol are computationally indistinguishable.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE145

Corollary 7.5. Assuming the TEE is secure (i.e., it acts as a trusted third party hosted by S),
Slalom is a secure outsourcing scheme between a remote client C and server S with privacy and
t-integrity for t = n/|S|k − λ(λ). If the model f is the property of S, the scheme further satisfies
model privacy.

Proof. The outsourcing protocol between the remote client C and server S hosting the TEE is simply
defined as follows (we assume the model belongs to S):

• st ← Preproc(): C and the TEE setup a secure authenticated communication channel, using
the TEE’s remote attestation property. The TEE receives the model f from S and initializes
the Slalom protocol.

• Outsource〈C(x, st),S(f)〉:

– C sends x to the TEE over the secure channel.

– The TEE securely computes y = f(x) using Slalom.

– The TEE sends y (and a publicly verifiable commitment to f) to C over the secure channel.

If the TEE is secure (i.e., it acts as a trusted third party hosted by S), then the result follows.

7.4 Empirical Evaluation

We evaluate Slalom on real Intel SGX hardware, on micro-benchmarks and a sample application (Im-
ageNet inference with VGG16, MobileNet and ResNet models). Our aim is to show that, compared
to a baseline that runs inference fully in the TEE, outsourcing linear layers increases performance
without sacrificing security.

7.4.1 Implementation

As enclaves cannot access most OS features (e.g., multi-threading, disk and driver IO), porting a
large framework such as TensorFlow or Intel’s MKL-DNN to SGX is hard. Instead, we designed a
lightweight C++ library for feed-forward networks based on Eigen, a linear-algebra library which
TensorFlow uses as a CPU backend. Our library implements the forward pass of neural networks,
with support for dense layers, standard and separable convolutions, pooling, and activations. When
run on a native CPU (without SGX), its performance is comparable to TensorFlow on CPU (compiled
with AVX).

Slalom performs arithmetic over Zp, for p = 224 − 3. For integrity, we apply Freivalds’ check
twice to each layer (k = 2), with random values from S = [−219, 219], to achieve 40 bits of statistical
soundness per layer (see Section 7.3.1 for details on the selection of these parameters). For a 50-
layer network, S has a chance of less than 1 in 22 billion of fooling the TEE on any incorrect model

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE146

Table 7.3: Details of models used to evaluate Slalom. Accuracies are computed on the Ima-
geNet validation set. Pre-trained models are from Keras [46].

Accuracy Quantized
Model Top 1 Top 5 Top 1 Top 5 Layers Params (M) Layer in/out (M)
VGG16 71.0 90.0 70.6 89.5 16 138.4 9.1 / 13.6
VGG16 (no top) - - - - 13 14.7 9.1 / 13.5
MobileNet 70.7 89.6 70.5 89.5 28 4.2 5.5 / 5.0
MobileNet (fused) - - - - 15 4.2 3.6 / 3.1
ResNet 50 76.9 92.4 76.4 92.2 50 25.5 10.0 / 10.4

evaluation (a slightly better guarantee than in SafetyNets). For privacy, we use AES-CTR and
AES-GCM to generate, encrypt and authenticate blinding factors.

7.4.2 Setup

We use an Intel Core i7-6700 Skylake 3.40GHz processor with 8GB of RAM, a desktop processor
with SGX support. The outsourced computations are performed on a co-located Nvidia TITAN XP
GPU. Due to a lack of native internal multi-threading in SGX, we run our TEE in a single CPU
thread. We discuss challenges for efficient parallelization in Section 7.4.6. We evaluate Slalom on
the following workloads:

• Synthetic benchmarks for matrix products, convolutions and separable convolutions, where we
compare the enclave’s running time for computing a linear operation to that of solely verifying
the result.

• ImageNet [61] classification with VGG16 [236], MobileNet [109], and ResNet [105] models
(with fused Batch Normalization layers when applicable).

MobileNet, a model tailored for low compute devices, serves as a worst-case benchmark for
Slalom, as the model’s design aggressively minimizes the amount of computation performed per
layer. We also consider a “fused” variant of MobileNet with no activation between depthwise and
pointwise convolutions. Removing these activations improves convergence and accuracy [47, 231],
while also making the network more outsourcing-friendly (i.e., it is possible to verify a separable
convolution in a single step).

Our evaluation focuses on throughput (number of forward passes per second). We also discuss
energy efficiency to account for hardware differences between our baseline (TEE only) and Slalom
(TEE + GPU), see section 7.4.4, A note on energy efficiency.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE147

512 1024 2048 4096
Matrix Dimension

0x

2x

4x

6x

8x

10x

12x

Sp
ee

du
p

1 1 1 1

5

2

5

1

8

4

7

2

Matrix Product
compute (baseline)
verify
verify w. preproc

102

103

104

105

106

107

Op
s /

 se
c

224x224x64 112x112x128 56x56x256 28x28x512
Input Dimension

0x
10x
20x
30x
40x
50x
60x
70x
80x

Sp
ee

du
p

1 1 1 12 3 4 40 1 1
79

17

29

63

Convolution
compute (baseline)
verify
verify batched (B=16)
verify w. preproc

100

101

102

103

Op
s /

 se
c

112x112x32 56x56x128 28x28x256 14x14x512
Input Dimension

0x

2x

5x

7x

10x

12x

15x

17x

Sp
ee

du
p

1 1 1 10 0
1

23
4

6

9

3
5

10

16

Separable Convolution
compute (baseline)
verify batched (B=32)
verify w. preproc
verify w. preproc fused

101

102

103

104

Op
s /

 se
c

Figure 7.2: Micro benchmarks on Intel SGX. We plot the relative speedup of verifying the
result of a linear operator compared to computing it entirely in the enclave. The dotted line shows
the throughput obtained for a direct computation. “Fused” separable convolutions contain no inter-
mediate activation.

7.4.3 Neural Network Details

Table 7.3 provides details about the two models we use in our evaluation (all pre-trained models
are taken from Keras [46]). We report top 1 and top 5 accuracy on ImageNet with and without the
simple quantization scheme described in Section 7.3.1. Quantization results in at most a 0.5% drop
in top 1 and top 5 accuracy. More elaborate quantization schemes exist (e.g., Micikevicius et al.
[169]) that we have not experimented with in this work.

We report the number of model parameters, which is relevant to the memory constraints of TEEs
such as Intel SGX. We also list the total size of the inputs and outputs of all the model’s linear
layers, which impact the amount of communication between trusted and untrusted co-processors
in Slalom, as well as the amount of data stored in the TEE when using Freivalds’ algorithm with
preprocessing.

7.4.4 Results

Micro-benchmarks. Our micro-benchmark suite consists of square matrix products of increasing
dimensions, convolutional operations performed by VGG16, and separable convolutions performed
by MobileNet. In all cases, the data is pre-loaded inside an enclave, so we only measure the in-enclave
execution time. Figure 7.2 plots the relative speedups of various verification strategies over the cost
of computing the linear operation directly. In all cases, the baseline computation is performed in
single-precision floating point, and the verification algorithms repeat Freivalds’ check so as to attain
at least 40 bits of statistical soundness.

For square matrices of dimensions up to 2048, verifying an outsourced result is 4× to 8× faster
than computing it. For larger matrices, we exceed the limit of SGX’s DRAM, so the enclave resorts
to expensive paging which drastically reduces performance both for computation and verification.

For convolutions (standard or separable), we achieve large savings with outsourcing if Freivalds’
algorithm is applied with preprocessing. The savings get higher as the number of channels increases.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE148

0x
10x
20x
30x

Sp
ee

du
p

1.0 1.6

19.8
12.7 10.4

VGG16

0x
10x
20x
30x

1.0 2.3
12.3

VGG16 without top

0x

5x

10x

1.0 1.9
3.6 3.5 2.7

MobileNet

0x

5x

10x

1.0 1.9

6.3 5.0 4.1

MobileNet (fused)

fully in enclave (baseline) verify verify w. preproc privacy privacy + integrity

1 2 20 13 11 2 4 21
16 30 57 56 43

Im
ag

es
 /

se
c

16 30
101 80 65

Figure 7.3: Verifiable and private inference with Intel SGX. We show results for VGG16,
VGG16 without the fully connected layers, MobileNet, and a fused MobileNet variant with no
intermediate activation for separable convolutions. We compare the baseline of fully executing the
model in the enclave (blue) to different secure outsourcing schemes: integrity with Freivalds (red);
integrity with Freivalds and precomputed secrets (yellow); privacy only (black); privacy and integrity
(purple).

Without preprocessing, Freivalds’ algorithm results in savings when cout is large. Due to SGX’s
small PRM, batched verification is only effective for operators with small memory footprints. As
expected, “truly” separable convolutions (with no intermediate non-linearity) are much faster to
verify, as they can be viewed as a single linear operator.

Verifiable inference. Figure 7.3 shows the throughout of end-to-end forward passes in two neural
networks, VGG16 and MobileNet. For integrity, we compare the secure baseline (executing the model
fully in the enclave) to two variants of the Slalom algorithm in Figure 7.1. The first (in red) applies
Freivalds’ algorithm “on-the-fly”, while the second more efficient variant (in orange) pre-computes
part of Freivalds’ check as described in Section 7.3.2.

The VGG16 network is much larger (500MB) than SGX’s PRM. As a result, there is a large
overhead on the forward pass and verification without preprocessing. If the enclave securely stores
preprocessed products Wr for all network weights, we drastically reduce the memory footprint and
achieve up to a 20.3× increase in throughput. We also ran the lower-half of the VGG16 network
(without the fully connected layers), a common approach for extracting features for transfer learning
or object recognition [153]. This part fits in the PRM, and we thus achieve higher throughput for
in-enclave forward passes and on-the-fly verification.

For MobileNet, we achieve between 3.6× and 6.4× speedups when using Slalom for verifiable
inference (for the standard or “fused” model, respectively). The speedups are smaller than for
VGG16, as MobileNet performs much fewer operations per layer (verifying a linear layer requires
computing at least two multiplications for each input and output. The closer the forward pass gets
to that lower-bound, the less we can save by outsourcing).

Private inference. We further benchmark the cost of private neural network inference, where
inputs of outsourced linear layers are additionally blinded. Blinding and unblinding each layer’s
inputs and outputs is costly, especially in SGX due to the extra in-enclave memory reads and

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE149

ResNet 18 ResNet 340x

10x

20x

Sp
ee

du
p

1.0 1.0
8.9

14.4
5.9 9.0

ResNet 50 ResNet 101 ResNet 1520x
5x

10x

Sp
ee

du
p

1.0 1.0 1.0

6.6 7.5 8.0
4.4 4.8 4.6

Im
ag

es
 /

se
c

17 156 103 10 139 87

Im
ag

es
 /

se
c

5 32 21 3 21 14 2 17 10

fully in enclave (baseline) verify w. preproc integrity + privacy

Figure 7.4: Secure outsourcing of ResNet models with Intel SGX. We compare the baseline
of fully executing the model in the enclave (blue) to secure outsourcing with integrity (yellow) and
privacy and integrity (purple).

writes. Nevertheless, for VGG16 and the fused MobileNet variant without intermediate activations,
we achieve respective speedups of 13.0× and 5.0× for private outsourcing (in black in Figure 7.3),
and speedups of 10.7× and 4.1× when also ensuring integrity (in purple). For this benchmark, the
precomputed unblinding factor are stored in untrusted memory.

We performed the same experiments on a standard CPU (i.e., without SGX) and find that
Slalom’s improvements are even higher in non-resource-constrained or multi-threaded environments
(see Section 7.4.5 and Section 7.4.6). Slalom’s improvements over the baseline also hold when
accounting for energy efficiency (see section 7.4.4, A note on energy efficiency below).

Extending Slalom to deep residual networks. The Slalom algorithm in Figure 7.1 and our
evaluations above focus on feed-forward architectures. Extending Slalom to more complex neural
networks is quite simple. To illustrate, we consider the family of ResNet models [105], which use
residual blocks g(x) = σ(g1(x) + g2(x)) that merge two feed-forward “paths” g1 and g2 into a final
activation σ. To verify integrity of g(x), the TEE simply verifies all linear layers in g1 and g2 and
computes σ directly. For privacy, the TEE applies the interactive Slalom protocol in Figure 7.1
(right) in turn to g1 and g2, and then computes σ. The results for the privacy-preserving Slalom
variant in Figure 7.4 use a preliminary implementation that performs all required operations—
and thus provides meaningful performance numbers—but without properly constructed unblinding
factors.

We use the ResNet implementation from Keras [46], which contains a pre-trained 50-layer variant.
For this model, we find that our quantization scheme results in less than a 0.5% decrease in accuracy
(see Table 7.3). For other variants (i.e., with 18, 34, 101 and 152 layers) we compute throughput on
untrained models. Figure 7.4 shows benchmarks for different ResNet variants when executed fully in
the enclave (our baseline) as well as secure outsourcing with integrity or privacy and integrity. For
all models, we achieve 6.6× to 14.4× speedups for verifiable inference and 4.4× to 9.0× speedups
when adding privacy.

Comparing results for different models is illustrative of how Slalom’s savings scale with model size
and architectural design choices. The 18 and 34-layer ResNets use convolutions with 3× 3 kernels,
whereas the larger models mainly use pointwise convolutions. As shown in Table 7.2 verifying a

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE150

512 1024 2048 4096 8192
Matrix Dimension

0x

10x

20x

30x

40x

Sp
ee

du
p

1 1 1 1 1
5 5 6

12

24

5 5
9

18

36

Matrix Product
compute (baseline)
verify
verify w. preproc

102

103

104

105

106

107

Op
s /

 se
c

224x224x64 112x112x128 56x56x256 28x28x512
Input Dimension

0x

25x

50x

75x

100x

125x

150x

175x

Sp
ee

du
p

1 1 1 12 3 4 54 6 11 1825
40

85

148

Convolution
compute (baseline)
verify
verify batched (B=16)
verify w. preproc

100

101

102

103

Op
s /

 se
c

112x112x32 56x56x128 28x28x256 14x14x512
Input Dimension

0x

5x

10x

15x

20x

25x

Sp
ee

du
p

1 1 1 12 3 3
54

6
8

12
8

11

16

25

Separable Convolution
compute (baseline)
verify batched (B=32)
verify w. preproc
verify w. preproc fused

101

102

103

104

Op
s /

 se
c

Figure 7.5: Micro benchmarks on an untrusted CPU. For three different linear operators, we
plot the relative speedup of verifying a result compared to computing it. The dotted line in each
plot shows the throughput obtained for computing the operation.

convolution is about a factor k2 · cout than computing it, which explains the higher savings for
models that use convolutions with large kernel windows. When adding more layers to a model, we
expect Slalom’s speedup over the baseline to remain constant (e.g., if we duplicate each layer, the
baseline computation and the verification should both take twice as long). Yet we find that Slalom’s
speedups usually increase as layers get added to the ResNet architecture. This is because the deeper
ResNet variants are obtained by duplicating layers towards the end of the pipeline, which have the
largest number of channels and for which Slalom achieves the highest savings.

A note on energy efficiency. When comparing approaches with different hardware (e.g., our
single-core CPU baseline versus Slalom which also uses a GPU), throughput alone is not the fairest
metric. E.g., the baseline’s throughput could also be increased by adding more SGX CPUs. A more
accurate comparison considers the energy efficiency of a particular approach, a more direct measure
of the recurrent costs to the server S.

For example, when evaluating MobileNet or VGG16, our GPU draws 85W of power, whereas
our baseline SGX CPU draws 30W. As noted above, the GPU also achieves more than 50× higher
throughput, and thus is at least 18× more energy efficient (e.g., measured in Joules per image) than
the enclave.

For Slalom, we must consider the cost of running both the enclave and GPU. In our evaluations,
the outsourced computations on the GPU account for at most 10% of the total running time of Slalom
(i.e., the integrity checks and data encryption/decryption in the enclave are the main bottleneck).
Thus, the power consumption attributed to Slalom is roughly 10% · 85W + 90% · 30W = 35.5W.
Note that when not being in use by Slalom, the trusted CPU or untrusted GPU can be used by
other tasks running on the server. As Slalom achieves 4×-20× higher throughput than our baseline
for the tasks we evaluate, it is also about 3.4×-17.1× more energy efficient.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE151

0x
10x
20x
30x

Sp
ee

du
p

1.0 2.4 4.2

19.5
9.7 8.1

VGG16

0x
5x

10x
15x

1.0 2.2 2.7
5.4

3.2 2.5

MobileNet

0x
5x

10x
15x

1.0 2.2 2.7

8.9
4.6 3.9

MobileNet (fused)

fully on CPU (baseline) verify verify batched verify w. preproc privacy privacy + integrity

2 5 9
44 22 18

19 40 50
101 60 47

Im
ag

es
 /

se
c

19 40 50
167

86 73

Figure 7.6: Inference with integrity and privacy on an untrusted CPU.We compare the base-
line inference throughput (blue) to that obtained with “on-the-fly” integrity checks (red); batched
integrity checks (green); integrity checks with precomputed secrets (yellow); privacy only (black);
and privacy and integrity (purple). The fused MobileNet model has no intermediate activation for
separable convolutions.

7.4.5 Results on a Standard CPU

For completeness, and to asses how our outsourcing scheme fairs in an environment devoid of Intel
SGX’s performance quirks, we rerun the evaluations in Section 7.4 on the same CPU but outside of
SGX’s enclave mode.

Figure 7.5 show the results of the micro-benchmarks for matrix multiplication, convolution and
separable convolutions. In all cases, verifying a computation becomes 1-2 orders of magnitude faster
than computing it as the outer dimension grows. Compared to the SGX benchmarks, we also see a
much better viability of batched verification (we haven’t optimized batched verifications much, as
they are inherently slow on SGX. It is likely that these numbers could be improved significantly, to
approach those of verification with preprocessing).

Figure 7.6 shows benchmarks for VGG16 and MobileNet on a single core with either direct
computation or various secure outsourcing strategies. For integrity alone, we achieve savings up to
8.9× and 19.5× for MobileNet and VGG16 respectively. Even without storing any secrets in the
enclave, we obtain good speedups using batched verification. As noted above, it is likely that the
batched results could be further improved. With additional blinding to preserve privacy, we achieve
speedups of 3.9× and 8.1× for MobileNet and VGG16 respectively.

7.4.6 Parallelization

Our experiments on SGX in Section 7.4 where performed using a single execution thread, as SGX
enclaves do not have the ability to create threads. We have also experimented with techniques for
achieving parallelism in SGX, both for standard computations and outsourced ones, but with little
success.

To optimize for throughput, a simple approach is to run multiple forward passes simultaneously.
On a standard CPU, this form of “outer-parallelism” achieves close to linear scaling as we increase
the number of threads from 1 to 4 on our quad-core machine. With SGX however, we did not manage
to achieve any parallel speedup for VGG16—whether for direct computation or verifying outsourced

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE152

512 1024 2048 4096 8192
Matrix Dimension

0x

10x

20x

30x

40x

Sp
ee

du
p

1 1 1 1 12 3
9

19

31

2 5

13

25

43

Matrix Product
compute
verify
verify w. preproc

103

104

105

106

107

Op
s /

 se
c

224x224x64 112x112x128 56x56x256 28x28x512
Input Dimension

0x

20x

40x

60x

80x

100x

120x

Sp
ee

du
p

1 1 1 1

27
40

85

102

Convolution
compute
verify w. preproc

100

101

102

103

Op
s /

 se
c

Figure 7.7: Multi-threaded micro benchmarks on an untrusted CPU. Reiterates benchmarks
for matrix products and convolutions using 4 threads.

results—presumably because each independent thread requires extra memory that quickly exceeds
the PRM limit. For the smaller MobileNet model, we get less than a 1.5× speedup using up to 4
threads, for direct computation or outsourced verification alike.

Neural networks typically also make use of intra-operation parallelism, i.e., computing the output
of a given layer using multiple threads. Our neural network library currently does not support intra-
operation parallelism, but implementing a dedicated thread pool for SGX could be an interesting
extension for future work. Instead, we evaluate the potential benefits of intra-op parallelism on a
standard untrusted CPU, for our matrix-product and convolution benchmarks. We make use of
Eigen’s internal multi-threading support to speed up these operations, and custom OpenMP code
to parallelize dot products, as Eigen does not do this on its own.

Figure 7.7 shows the results using 4 threads. For convolutions, we have currently only imple-
mented multi-threading for the verification with preprocessing (which requires only standard dot
products). Surprisingly maybe, we find that multi-threading increases the gap between direct and
verified computations of matrix products, probably because dot products are extremely easy to
parallelize efficiently (compared to full convolutions). We also obtain close to linear speedups for
verifiable separable convolutions, but omit the results as we currently do not have an implementa-
tion of multi-threaded direct computation for depthwise convolutions, which renders the comparison
unfair. Due to the various memory-access overheads in SGX, it is unclear whether similar speedups
could be obtained by using intra-op parallelism in an enclave, but this is an avenue worth exploring.

7.5 Challenges for Verifiable and Private Training

Our techniques for secure outsourcing of neural network inference might also apply to model training.
Indeed, a backward pass consists of similar linear operators as a forward pass, and can thus be
verified with Freivalds’ algorithm. Yet, applying Slalom to neural network training is challenging,
as described below, and we leave this problem open.

CHAPTER 7. SLALOM: FASTER PRIVATE INFERENCE WITH TRUSTED HARDWARE153

• Quantizing neural networks for training is harder than for inference, due to large changes in
weight magnitudes [169]. Thus, a more flexible quantization scheme than the one we used
would be necessary.

• Because the model’s weights change during training, the same preprocessed random vectors for
Freivalds’ check cannot be re-used indefinitely. The most efficient approach would presumably
be to train with very large batches than can then be verified simultaneously.

• Finally, the pre-computation techniques we employ for protecting input privacy do not apply
for training, as the weights change after every processed batch. Moreover, Slalom does not
try to hide the model weights from the untrusted processor, which might be a requirement for
private training.

7.6 Conclusion

We have studied the efficiency of evaluating a neural network in a Trusted Execution Environment
(TEE) to provide strong integrity and privacy guarantees. We explored new approaches for seg-
menting a neural network evaluation to securely outsource work from a trusted environment to a
faster co-located but untrusted processor.

We designed Slalom, a framework for efficient neural network evaluation that outsources all
linear layers from a TEE to a GPU. Slalom leverage Freivalds’ algorithm for verifying correctness
of linear operators, and additionally encrypts inputs with precomputed blinding factors to preserve
privacy. Slalom can work with any TEE and we evaluated its performance using Intel SGX on
various workloads. For canonical image classifiers (VGG16, MobileNet and ResNet variants), we
have shown that Slalom boosts inference throughput without compromising security.

Securely outsourcing matrix products from a TEE has applications in ML beyond neural network
(e.g., non negative matrix factorization, dimensionality reduction, etc.) We have also explored
avenues and challenges towards applying similar techniques to neural network training, an interesting
direction for future work. Finally, our general approach of outsourcing work from a TEE to a faster
co-processor could be applied to other problems which have fast verification algorithms, e.g., those
considered in [163, 287].

Part III

Conclusion

154

155

Despite substantial recent improvements in the predictive capabilities of machine learning sys-
tems, these systems remain surprisingly prone to mistakes that threaten the security and privacy of
their users. To fully reap the benefits of data-driven systems in security- or safety-critical applica-
tions, it is thus imperative that we better understand and ultimately mitigate the flaws of current
machine learning models.

In this dissertation, we have introduced new approaches and techniques for measuring and en-
hancing the integrity and privacy of machine learning. We have critically assessed the threat posed
by adversarial examples to existing machine learning applications, and demonstrated a more com-
pelling use-case in the context of online content blocking. We have further shown that existing
defense techniques only cover an overly simplistic threat model, and are inherently limited against
realistic attacks. To enhance the privacy of machine learning users, we have developed new techniques
for private training and inference that significantly reduce the utility gap compared to non-private
baselines.

The results in this dissertation pave the way towards a more rigorous assessment of the security
risks faced by machine learning models deployed in adversarial settings, and present encouraging
avenues towards building high-performing learning systems that refrain from needlessly endangering
users’ privacy.

Bibliography

[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In ACM SIGSAC Conference on
Computer and Communications Security, pages 308–318, 2016.

[2] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security-enabling
trusted computing in embedded systems. Technical report, ARM, 2004.

[3] Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions on Signal
Processing, 62(16):4114–4128, 2014.

[4] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Ro-
chette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan
Bruna, Vincent Lostanlen, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella,
and Michael Eickenberg. Kymatio: Scattering transforms in Python. Journal of Machine
Learning Research, 21(60):1–6, 2020.

[5] Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International
Conference on Learning Representations, 2020.

[6] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, 2018.

[7] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. In International Conference on Machine Learning, 2018.

[8] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. In ACM
Transactions on Graphics, volume 26, page 10, 2007.

[9] Mitali Bafna, Jack Murtagh, and Nikhil Vyas. Thwarting adversarial examples: An `0-robust
sparse Fourier transform. In Advances in Neural Information Processing Systems, pages 10096–
10106, 2018.

156

BIBLIOGRAPHY 157

[10] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has dis-
parate impact on model accuracy. In Advances in Neural Information Processing Systems,
pages 15479–15488, 2019.

[11] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In IEEE Symposium on Foundations of Computer
Science, pages 464–473, 2014.

[12] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In ACM Symposium on Theory of Computing,
pages 1–10, 1988.

[13] Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett. A survey of deep
learning methods for cyber security. Information, 10(4):122, 2019.

[14] Andrew C Berry. The accuracy of the Gaussian approximation to the sum of independent
variates. Transactions of the American Mathematical Society, 49(1):122–136, 1941.

[15] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian Ziebart. Lever-
aging machine learning to improve unwanted resource filtering. In ACM Workshop on Artificial
Intelligence and Security, 2014.

[16] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In International Conference on Machine Learning, 2012.

[17] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time.
In European Conference on Machine Learning and Knowledge Discovery in Databases, pages
387–402. Springer, 2013.

[18] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[19] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1175–1191, 2017.

[20] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and
Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In USENIX
Workshop on Offensive Technologies, 2017.

BIBLIOGRAPHY 158

[21] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. In International Conference on
Learning Representations, 2018.

[22] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(8):1872–1886, 2013.

[23] Zhiqi Bu, Jinshuo Dong, Qi Long, and Su Weijie. Deep learning with Gaussian differential
privacy. Harvard Data Science Review, 9 2020.

[24] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John C Mitchell. The end is nigh:
Generic solving of text-based CAPTCHAs. In USENIX Workshop on Offensive Technologies,
2014.

[25] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In ACM Symposium on Theory of Computing,
pages 494–503, 2002.

[26] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy, 2017.

[27] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In ACM Workshop on Artificial Intelligence and Security, pages 3–14,
2017.

[28] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-
to-text. In IEEE Workshop on Deep Learning Security, 2018.

[29] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr, Clay Shields,
David Wagner, and Wenchao Zhou. Hidden voice commands. In USENIX Security Symposium,
pages 513–530, 2016.

[30] Nicholas Carlini, Úlfar Erlingsson, and Nicolas Papernot. Prototypical examples in deep learn-
ing: Metrics, characteristics, and utility, 2019. URL https://openreview.net/forum?id=

r1xyx3R9tQ.

[31] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In USENIX Security
Symposium, pages 267–284, 2019.

[32] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
Raffel. Extracting training data from large language models. In USENIX Security Symposium,
2021.

https://openreview.net/forum?id=r1xyx3R9tQ
https://openreview.net/forum?id=r1xyx3R9tQ

BIBLIOGRAPHY 159

[33] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Un-
labeled data improves adversarial robustness. In Advances in Neural Information Processing
Systems, pages 11192–11203, 2019.

[34] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empir-
ical risk minimization. Journal of Machine Learning Research, 12(3), 2011.

[35] Chen Chen and Jaewoo Lee. Stochastic adaptive line search for differentially private optimiza-
tion. In IEEE International Conference on Big Data, 2020.

[36] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai.
SGXPECTRE: Stealing intel secrets from SGX enclaves via speculative execution. In IEEE
European Symposium on Security and Privacy, 2019.

[37] Jianbo Chen and Michael I Jordan. HopSkipJumpAttack: A query-efficient decision-based
attack. In IEEE Symposium on Security and Privacy, 2020.

[38] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu, Jackie
Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy Sohn, and Yonghui Wu. Gmail
smart compose: Real-time assisted writing. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2287–2295, 2019.

[39] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD: elastic-net
attacks to deep neural networks via adversarial examples. In AAAI Conference on Artificial
Intelligence, 2018.

[40] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. Detecting privileged
side-channel attacks in shielded execution with Déjá Vu. In ACM Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

[41] Steven Chen, Nicholas Carlini, and David Wagner. Stateful detection of black-box adversarial
attacks. In ACM Workshop on Security and Privacy on Artificial Intelligence, 2020.

[42] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International Conference on Machine
Learning, 2020.

[43] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
self-supervised models are strong semi-supervised learners. In Advances in Neural Information
Processing Systems, 2020.

[44] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks
on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

BIBLIOGRAPHY 160

[45] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari
Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contract execution. In IEEE European Symposium on
Security and Privacy, 2019.

[46] François Chollet et al. Keras. https://keras.io, 2015.

[47] François Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[48] Edward Chou, Florian Tramèr, and Giancarlo Pellegrino. Sentinet: Detecting physical attacks
against deep learning systems. In IEEE Workshop on Deep Learning Security, 2020.

[49] Nicolas Christin, Sally S Yanagihara, and Keisuke Kamataki. Dissecting one click frauds. In
ACM SIGSAC Conference on Computer and Communications Security, pages 15–26, 2010.

[50] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling deep
structured prediction models. In Advances in Neural Information Processing Systems, 2017.

[51] Kenneth T Co, Luis Muñoz-González, Sixte de Maupeou, and Emil C Lupu. Procedural noise
adversarial examples for black-box attacks on deep convolutional networks. In ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[52] Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In Neural
networks: Tricks of the trade, pages 561–580. Springer, 2012.

[53] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via random-
ized smoothing. In International Conference on Machine Learning, pages 1310–1320, 2019.

[54] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

[55] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch., 2016
(86), 2016. URL http://eprint.iacr.org/2016/086.

[56] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. In USENIX Security Symposium, 2016.

[57] Justin Crites and Mathias Ricken. Automatic ad blocking: Improving AdBlock for the Mozilla
platform. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.544.5305.

[58] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In IEEE
Conference on Computer Vision and Pattern Recognition, volume 1, pages 886–893, 2005.

https://keras.io
http://eprint.iacr.org/2016/086
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.544.5305

BIBLIOGRAPHY 161

[59] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ah-
mad Moghimi, and Yuval Yarom. Cachequote: Efficiently recovering long-term secrets of SGX
EPID via cache attacks. International Conference on Cryptographic Hardware and Embedded
Systems, 2018(2):171–191, 2018.

[60] Ambra Demontis, Paolo Russu, Battista Biggio, Giorgio Fumera, and Fabio Roli. On security
and sparsity of linear classifiers for adversarial settings. In IAPR Workshop on Statistical
Techniques in Pattern Recognition, pages 322–332. Springer, 2016.

[61] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[62] Digital Advertising Alliance (DAA). Self regulatory principles for online behavioral adver-
tising. https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/

seven-principles-07-01-09.pdf, 2009. Accessed: 2021-06-22.

[63] Digital Advertising Alliance (DAA). DAA icon ad marker creative guidelines.
https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/DAA_

Icon_Ad_Creative_Guidelines.pdf, 2013. Accessed: 2021-06-22.

[64] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the l1-ball for learning in high dimensions. In International Conference on Machine
Learning, 2008.

[65] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Advances in Cryptology -
EUROCRYPT, pages 486–503. Springer, 2006.

[66] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Theory of Cryptography Conference, pages 265–284. Springer,
2006.

[67] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In ACM Sym-
posium on Theory of Computing, pages 117–126, 2015.

[68] The Economist. The world’s most valuable resource is no longer oil, but data. The Economist,
2017.

[69] Benjamin Edelman. False and deceptive display ads at Yahoo’s right media. http://www.

benedelman.org/rightmedia-deception/#reg, 2009. Accessed: 2021-06-22.

https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/seven-principles-07-01-09.pdf
https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/seven-principles-07-01-09.pdf
https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/DAA_Icon_Ad_Creative_Guidelines.pdf
https://digitaladvertisingalliance.org/sites/aboutads/files/DAA_files/DAA_Icon_Ad_Creative_Guidelines.pdf
http://www.benedelman.org/rightmedia-deception/#reg
http://www.benedelman.org/rightmedia-deception/#reg

BIBLIOGRAPHY 162

[70] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and
Aleksander Madry. Adversarial robustness as a prior for learned representations. arXiv preprint
arXiv:1906.00945, 2019.

[71] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.
Exploring the landscape of spatial robustness. In International Conference on Machine Learn-
ing, 2019.

[72] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L Kline. Machine
learning for medical imaging. Radiographics, 37(2):505–515, 2017.

[73] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian Tramèr,
Atul Prakash, Tadayoshi Kohno, and Dawn Song. Physical adversarial examples for object
detectors. In USENIX Workshop on Offensive Technologies, 2018.

[74] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
visual classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1625–1634, 2018.

[75] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any classifier.
In Advances in Neural Information Processing Systems, pages 1186–1195, 2018.

[76] Vitaly Feldman. Does learning require memorization? A short tale about a long tail. In ACM
Symposium on Theory of Computing, pages 954–959, 2020.

[77] Vitaly Feldman and Tijana Zrnic. Individual privacy accounting via a Rényi filter. arXiv
preprint arXiv:2008.11193, 2020.

[78] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification
by iteration. In IEEE Symposium on Foundations of Computer Science, pages 521–532, 2018.

[79] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and ma-
trix computations, with applications. In ACM SIGSAC Conference on Computer and Com-
munications Security, pages 501–512, 2012.

[80] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. Iron: functional
encryption using Intel SGX. In ACM SIGSAC Conference on Computer and Communications
Security, pages 765–782, 2017.

[81] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In ACM SIGSAC Conference on Computer
and Communications Security, 2015.

BIBLIOGRAPHY 163

[82] Rusins Freivalds. Probabilistic machines can use less running time. In IFIP Congress on
Information Processing, volume 839, page 842, 1977.

[83] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In IEEE Symposium on Security and Privacy, 2018.

[84] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In International Conference on Learning Representa-
tions, 2019.

[85] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on
Theory of Computing, pages 169–178, 2009.

[86] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[87] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural
networks on an untrusted cloud. In Advances in Neural Information Processing Systems, pages
4675–4684, 2017.

[88] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International Conference on Machine Learning, pages 201–210, 2016.

[89] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivat-
ing the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732,
2018.

[90] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin
Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.

[91] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM Sympo-
sium on Theory of Computing, pages 218–229, 1987.

[92] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[93] Ian Goodfellow. A research agenda: Dynamic models to defend against correlated attacks.
arXiv preprint arXiv:1903.06293, 2019.

[94] Ian Goodfellow and Nicolas Papernot. Is attacking machine learning easier than defending it?
Blog post on Feb, 15:2017, 2017.

BIBLIOGRAPHY 164

[95] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In International Conference on Learning Representations, 2015.

[96] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks on
Intel SGX. In ACM European Workshop on Systems Security, page 2, 2017.

[97] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[98] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017.

[99] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick Mc-
Daniel. Adversarial examples for malware detection. In European Symposium on Research in
Computer Security, 2017.

[100] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adver-
sarial examples. arXiv preprint arXiv:1412.5068, 2014.

[101] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders. An automated
approach for complementing ad blockers’ blacklists. Privacy Enhancing Technologies, 2:282–
298, 2015.

[102] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International Conference on Machine Learning, pages
1737–1746, 2015.

[103] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin, Michael Backes,
and Mario Fritz. MLCapsule: Guarded offline deployment of machine learning as a service. In
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2021.

[104] Danny Harnik and Eliad Tsfadia. Impressions of Intel SGX performance. https://medium.

com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a, 2017. Ac-
cessed: 2021-06-22.

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[106] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defenses: Ensembles of weak defenses are not strong. In USENIX Workshop on Offensive
Technologies, 2017.

https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a

BIBLIOGRAPHY 165

[107] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

[108] Jovanni Hernandez, Akshay Jagadeesh, and Jonathan Mayer. Tracking the trackers:
The AdChoices icon. http://cyberlaw.stanford.edu/blog/2011/08/tracking-trackers-

adchoices-icon, 2011. Accessed: 2021-06-22.

[109] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[110] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. Secure and robust SIFT. In ACM
International Conference on Multimedia, pages 637–640, 2009.

[111] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chiron:
Privacy-preserving machine learning as a service. arXiv preprint arXiv:1803.05961, 2018.

[112] Zaeem Hussain, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas, Zuha
Agha, Nathan Ong, and Adriana Kovashka. Automatic understanding of image and video
advertisements. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1100–1110, 2017.

[113] Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G Dimakis.
The robust manifold defense: Adversarial training using generative models. arXiv preprint
arXiv:1712.09196, 2017.

[114] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks
with limited queries and information. In International Conference on Machine Learning, 2018.

[115] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. In Advances in
Neural Information Processing Systems, 2019.

[116] Intel Corp. Intel Software Guard Extensions Evaluation SDK. https://software.intel.

com/en-us/sgx-sdk, 2015. Accessed: 2021-06-22.

[117] Intel Corp. Intel software guard extensions (SGX) SW development guidance for potential
bounds check bypass (CVE-2017-5753) side channel exploits. https://software.intel.com/

sites/default/files/180204_SGX_SDK_Developer_Guidance_v1.0.pdf, 2018. Accessed:
2021-06-22.

[118] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. The ad wars: retrospective measurement and
analysis of anti-adblock filter lists. In ACM Internet Measurement Conference, pages 171–183,
2017.

http://cyberlaw.stanford.edu/blog/2011/08/tracking-trackers-adchoices-icon
http://cyberlaw.stanford.edu/blog/2011/08/tracking-trackers-adchoices-icon
https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/sites/default/files/180204_SGX_SDK_Developer_Guidance_v1.0.pdf
https://software.intel.com/sites/default/files/180204_SGX_SDK_Developer_Guidance_v1.0.pdf

BIBLIOGRAPHY 166

[119] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu, Zhiyun Qian, and Benjamin Livshits.
AdGraph: A machine learning approach to automatic and effective adblocking. In IEEE
Symposium on Security and Privacy, 2020.

[120] Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. Excessive invari-
ance causes adversarial vulnerability. In International Conference on Learning Representations,
2019.

[121] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
pages 8571–8580, 2018.

[122] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private SGD? In Advances in Neural Information Processing Systems,
2020.

[123] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning
without distress: Privacy-preserving empirical risk minimization. In Advances in Neural In-
formation Processing Systems, pages 6343–6354, 2018.

[124] Jason Jo and Yoshua Bengio. Measuring the tendency of CNNs to learn surface statistical
regularities. arXiv preprint arXiv:1711.11561, 2017.

[125] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In International Symposium on Computer Architecture,
pages 1–12, 2017.

[126] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency
framework for secure neural network inference. In USENIX Security Symposium, 2018.

[127] Peter Kairouz, Mónica Ribero, Keith Rush, and Abhradeep Thakurta. Fast dimension inde-
pendent private AdaGrad on publicly estimated subspaces. arXiv preprint arXiv:2008.06570,
2020.

[128] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer

BIBLIOGRAPHY 167

Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning. Foundations
and Trends in Machine Learning, 14(1), 2021.

[129] Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, and Jacob Steinhardt. Transfer of adver-
sarial robustness between perturbation types. arXiv preprint arXiv:1905.01034, 2019.

[130] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness
against unforeseen adversaries. arXiv preprint arXiv:1908.08016, 2019.

[131] Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton. Learning the difference that makes
a difference with counterfactually-augmented data. In International Conference on Learning
Representations, 2020.

[132] Marc Khoury and Dylan Hadfield-Menell. On the geometry of adversarial examples. arXiv
preprint arXiv:1811.00525, 2018.

[133] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk mini-
mization and high-dimensional regression. In Conference on Learning Theory, pages 25–1,
2012.

[134] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations, 2015.

[135] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE Symposium on Security and Privacy, 2019.

[136] Ilker Koksal. How Alexa is changing the future of advertising. https://www.forbes.com/

sites/ilkerkoksal/2018/12/11/how-alexa-is-changing-the-future-of-advertising,
2018. Accessed: 2021-06-22.

[137] Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, 2017.

[138] Georgios Kontaxis and Monica Chew. Tracking protection in Firefox for privacy and perfor-
mance. In Web 2.0 Security and Privacy Workshop, 2015.

[139] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better ImageNet models transfer
better? In IEEE Conference on Computer Vision and Pattern Recognition, pages 2661–2671,
2019.

https://www.forbes.com/sites/ilkerkoksal/2018/12/11/how-alexa-is-changing-the-future-of-advertising
https://www.forbes.com/sites/ilkerkoksal/2018/12/11/how-alexa-is-changing-the-future-of-advertising

BIBLIOGRAPHY 168

[140] Viktor Krammer. An effective defense against intrusive web advertising. In IEEE Conference
on Privacy, Security and Trust, pages 3–14, 2008.

[141] Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

[142] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[143] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In International Conference on Learning Representations, 2017.

[144] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
International Conference on Learning Representations, 2017.

[145] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST handwritten digit
database. ATT Labs, 2010.

[146] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Cer-
tified robustness to adversarial examples with differential privacy. In IEEE Symposium on
Security and Privacy, pages 656–672, 2019.

[147] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring fine-grained control flow inside SGX enclaves with branch shadowing. In USENIX
Security Symposium, pages 16–18, 2017.

[148] Pedro Giovanni Leon, Justin Cranshaw, Lorrie Faith Cranor, Jim Graves, Manoj Hastak, Blase
Ur, and Guzi Xu. What do online behavioral advertising privacy disclosures communicate to
users? In ACM Workshop on Privacy in the electronic society, pages 19–30, 2012.

[149] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial attack
and certifiable robustness. arXiv preprint arXiv:1809.03113, 2018.

[150] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and San-
jeev Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809,
2019.

[151] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Knowing your enemy:
understanding and detecting malicious web advertising. In ACM SIGSAC Conference on
Computer and Communications Security, 2012.

[152] Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In ACM Sympo-
sium on Theory of Computing, pages 298–309, 2019.

BIBLIOGRAPHY 169

[153] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. SSD: Single shot multibox detector. In European Conference on
Computer Vision, pages 21–37. Springer, 2016.

[154] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. In International Conference on Learning Representations,
2017.

[155] David G Lowe. Object recognition from local scale-invariant features. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages 1150–1157, 1999.

[156] David G Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision, 60(2):91–110, 2004.

[157] Alexander Selvikvåg Lundervold and Arvid Lundervold. An overview of deep learning in
medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2):102–127, 2019.

[158] Aleksander Madry and Zico Kolter. Adversarial robustness: Theory and practice. In Tutorial
at NeurIPS 2018, 2018. URL https://adversarial-ml-tutorial.org/. Accessed: 2021-06-
22.

[159] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[160] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concen-
tration in robust learning: Evasion and poisoning attacks from concentration of measure. In
AAAI Conference on Artificial Intelligence, 2019.

[161] Matthew Malloy, Mark McNamara, Aaron Cahn, and Paul Barford. Ad blockers: Global
prevalence and impact. In ACM Internet Measurement Conference, pages 119–125, 2016.

[162] Christopher Manning and Hinrich Schütze. Foundations of statistical natural language pro-
cessing. MIT Press, 2001.

[163] Ross M McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algo-
rithms. Computer Science Review, 5(2):119–161, 2011.

[164] Frank McKeen, Ilya Alex, Alex Berenzon, Carlos Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday Savagaonkar. Innovative instructions and software model for isolated execution. In
ACM Workshop on Hardware and Architectural Support for Security and Privacy, 2013.

https://adversarial-ml-tutorial.org/

BIBLIOGRAPHY 170

[165] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[166] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. In International Conference on Learning Representations,
2018.

[167] Jeremy B. Merrill and Ariana Tobin. Facebook moves to block ad transparency tools - including
ours. https://www.propublica.org/article/facebook-blocks-ad-transparency-tools,
2019. Accessed: 2021-06-22.

[168] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting
adversarial perturbations. In International Conference on Learning Representations, 2017.

[169] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Gar-
cia, Boris Ginsburg, Michael Houston, Oleksii Kuchaev, Ganesh Venkatesh, and Hao Wu.
Mixed precision training. In International Conference on Learning Representations, 2018.

[170] Ilya Mironov. Rényi differential privacy. In IEEE Computer Security Foundations Symposium,
pages 263–275, 2017.

[171] Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled Gaussian
mechanism. arXiv preprint arXiv:1908.10530, 2019.

[172] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[173] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How SGX amplifies
the power of cache attacks. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 69–90. Springer, 2017.

[174] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In IEEE Symposium on Security and Privacy, pages 19–38, 2017.

[175] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1765–1773, 2017.

[176] Muhammad Haris Mughees, Zhiyun Qian, Zubair Shafiq, Karishma Dash, and Pan Hui. A first
look at ad-block detection: A new arms race on the Web. arXiv preprint arXiv:1605.05841,
2016.

https://www.propublica.org/article/facebook-blocks-ad-transparency-tools

BIBLIOGRAPHY 171

[177] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. Detecting anti ad-blockers in
the wild. In Privacy Enhancing Technologies, volume 3, pages 130–146, 2017.

[178] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In International Conference on Machine Learning, 2010.

[179] Milad Nasr, Reza Shokri, and Amir Houmansadr. Improving deep learning with differential
privacy using gradient encoding and denoising. arXiv preprint arXiv:2007.11524, 2020.

[180] Meghan Neal. You’re going to need an ad blocker for your next TV. https:

//motherboard.vice.com/en_us/article/mg7ek8/youre-going-to-need-an-ad-

blocker-for-your-next-tv, 2016. Accessed: 2021-06-22.

[181] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in
private data analysis. In ACM Symposium on Theory of Computing, pages 75–84, 2007.

[182] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez, Marjan
Falahrastegar, Julia E Powles, ED Cristofaro, Hamed Haddadi, and Steven J Murdoch. Ad-
blocking and counter blocking: A slice of the arms race. In USENIX Workshop on Free and
Open Communications on the Internet, 2016.

[183] Olga Ohrimenko, Felix Schuster, Cdric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors.
In USENIX Security Symposium, 2016.

[184] Paraska Oleksandr. Towards more intelligent ad blocking on the web. https://medium.com/

@shoniko/towards-more-intelligent-ad-blocking-on-the-web-9f67bf2a12b5, 2018.
Accessed: 2021-06-22.

[185] Catherine Olsson. Unsolved research problems vs. real-world threat models.
https://medium.com/@catherio/unsolved-research-problems-vs-real-world-threat-

models-e270e256bc9e, Mar 2019. Accessed: 2021-06-22.

[186] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: Exitless OS
services for SGX enclaves. In ACM European Conference on Computer Systems, pages 238–
253, 2017.

[187] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classifi-
cation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2865–2873,
2015.

[188] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien,
Matthew Blaschko, and Eugene Belilovsky. Scattering networks for hybrid representation

https://motherboard.vice.com/en_us/article/mg7ek8/youre-going-to-need-an-ad-blocker-for-your-next-tv
https://motherboard.vice.com/en_us/article/mg7ek8/youre-going-to-need-an-ad-blocker-for-your-next-tv
https://motherboard.vice.com/en_us/article/mg7ek8/youre-going-to-need-an-ad-blocker-for-your-next-tv
https://medium.com/@shoniko/towards-more-intelligent-ad-blocking-on-the-web-9f67bf2a12b5
https://medium.com/@shoniko/towards-more-intelligent-ad-blocking-on-the-web-9f67bf2a12b5
https://medium.com/@catherio/unsolved-research-problems-vs-real-world-threat-models-e270e256bc9e
https://medium.com/@catherio/unsolved-research-problems-vs-real-world-threat-models-e270e256bc9e

BIBLIOGRAPHY 172

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(9):2208–2221,
2018.

[189] George Paliy. The future of advertising in virtual reality. https://www.kivodaily.com/

technology/the-future-of-advertising-in-virtual-reality/, 2018. Accessed: 2021-
06-22.

[190] Priyadarshini Panda, Indranil Chakraborty, and Kaushik Roy. Discretization based solutions
for secure machine learning against adversarial attacks. IEEE Access, 7:70157–70168, 2019.

[191] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In IEEE European
Symposium on Security and Privacy, pages 372–387, 2016.

[192] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks. In IEEE Symposium
on Security and Privacy, pages 582–597, 2016.

[193] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. In International
Conference on Learning Representations, 2017.

[194] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In ACM Asia Conference
on Computer and Communications Security, pages 506–519, 2017.

[195] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the
science of security and privacy in machine learning. In IEEE European Symposium on Security
and Privacy, 2018.

[196] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar
Erlingsson. Scalable private learning with PATE. In International Conference on Learning
Representations, 2018.

[197] Nicolas Papernot, Steve Chien, Shuang Song, Abhradeep Thakurta, and Úlfar Erlingsson.
Making the shoe fit: Architectures, initializations, and tuning for learning with privacy.
https://openreview.net/forum?id=rJg851rYwH, 2020.

[198] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson.
Tempered sigmoid activations for deep learning with differential privacy. In Theory and Prac-
tice of Differential Privacy, 2020.

[199] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

https://www.kivodaily.com/technology/the-future-of-advertising-in-virtual-reality/
https://www.kivodaily.com/technology/the-future-of-advertising-in-virtual-reality/

BIBLIOGRAPHY 173

[200] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure
processors. In Advances in Cryptology - EUROCRYPT, 2017.

[201] Giancarlo Pellegrino, Christian Rossow, Fabrice J Ryba, Thomas C Schmidt, and Matthias
Wählisch. Cashing out the great cannon? On browser-based DDoS attacks and economics. In
USENIX Workshop on Offensive Technologies, 2015.

[202] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian Rossow.
Deemon: Detecting CSRF with dynamic analysis and property graphs. In ACM SIGSAC
Conference on Computer and Communications Security, pages 1757–1771, 2017.

[203] Adblock Plus. Issue 7088: Implement hide-if-contains-image snippet. https://issues.

adblockplus.org/ticket/7088. Accessed: 2021-06-22.

[204] Vinay Uday Prabhu and Abeba Birhane. Large image datasets: A pyrrhic win for computer
vision? In IEEE/CVF Winter Conference on Applications of Computer Vision, 2021.

[205] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. Annoyed users: Ads and ad-block usage in
the wild. In ACM Internet Measurement Conference, pages 93–106, 2015.

[206] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. arXiv
preprint arXiv:2103.00020, 2021.

[207] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018.

[208] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2008.

[209] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing Liu, Jeff
Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, et al. Conversational AI: The science
behind the Alexa prize. arXiv preprint arXiv:1801.03604, 2018.

[210] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN features
off-the-shelf: an astounding baseline for recognition. In IEEE Computer Vision and Pattern
Recognition Workshops, pages 512–519, 2014.

[211] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10
classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

[212] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 6517–6525, 2017.

https://issues.adblockplus.org/ticket/7088
https://issues.adblockplus.org/ticket/7088

BIBLIOGRAPHY 174

[213] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[214] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788, 2016.

[215] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?: Explaining
the predictions of any classifier. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

[216] Benjamin Rubinstein, Peter Bartlett, Ling Huang, and Nina Taft. Learning in a large function
space: Privacy-preserving mechanisms for SVM learning. Journal of Privacy and Confiden-
tiality, 4(1):65–100, 2012.

[217] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. Adversarial manipulation of
deep representations. International Conference on Learning Representations, 2016.

[218] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[219] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference on Learning
Representations, 2018.

[220] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.
Adversarially robust generalization requires more data. In Advances in Neural Information
Processing Systems, pages 5019–5031, 2018.

[221] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Results of spatial trans-
formation attack. https://openreview.net/forum?id=S1EHOsC9tX¬eId=SylqQqa6jQ,
2019. Accessed: 2021-06-22.

[222] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first ad-
versarially robust neural network model on MNIST. In International Conference on Learning
Representations, 2019.

[223] Leonardo Selvaggio. Urme surveillance: performing privilege in the face of automation. Inter-
national Journal of Performance Arts and Digital Media, 11(2):165–184, 2015.

[224] Amirreza Shaeiri, Rozhin Nobahari, and Mohammad Hossein Rohban. Towards deep learning
models resistant to large perturbations. arXiv preprint arXiv:2003.13370, 2020.

https://openreview.net/forum?id=S1EHOsC9tX¬eId=SylqQqa6jQ

BIBLIOGRAPHY 175

[225] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adver-
sarial examples inevitable? In International Conference on Learning Representations, 2019.

[226] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances
in Neural Information Processing Systems, 2019.

[227] Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan
Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. In International Con-
ference on Machine Learning, 2020.

[228] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In ACM SIGSAC Conference
on Computer and Communications Security, pages 1528–1540, 2016.

[229] Mahmood Sharif, Lujo Bauer, and Michael K Reiter. On the suitability of lp-norms for creating
and preventing adversarial examples. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1605–1613, 2018.

[230] Yash Sharma and Pin-Yu Chen. Attacking the Madry defense model with L1-based adversarial
examples. In International Conference on Learning Representations Workshops, 2018.

[231] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey Aleksic. A
quantization-friendly separable convolution for MobileNets. In Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications, 2018.

[232] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Network and Distributed System Se-
curity Symposium, 2017.

[233] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing page
faults from telling your secrets. In ACM Asia Conference on Computer and Communications
Security, pages 317–328, 2016.

[234] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In ACM SIGSAC
Conference on Computer and Communications Security, pages 1310–1321, 2015.

[235] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In IEEE Symposium on Security and Privacy, pages
3–18, 2017.

[236] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

BIBLIOGRAPHY 176

[237] Ashish Kumar Singh and Vidyasagar Potdar. Blocking online advertising-a state of the art.
In IEEE International Conference on Industrial Technology, pages 1–10, 2009.

[238] Congzheng Song and Vitaly Shmatikov. Fooling OCR systems with adversarial text images.
arXiv preprint arXiv:1802.05385, 2018.

[239] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In IEEE Global Conference on Signal and Information Process-
ing, pages 245–248, 2013.

[240] Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based classifier: A case study.
In IEEE Symposium on Security and Privacy, 2014.

[241] Pierre Stock and Moustapha Cisse. Convnets and ImageNet beyond accuracy: Understanding
mistakes and uncovering biases. In European Conference on Computer Vision, pages 498–512,
2018.

[242] Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Patterson, Michael W. Mahoney, Randy H.
Katz, Anthony D. Joseph, Michael I. Jordan, Joseph M. Hellerstein, Joseph E. Gonzalez,
Ken Goldberg, Ali Ghodsi, David E. Culler, and Pieter Abbeel. A Berkeley view of systems
challenges for AI. arXiv preprint arXiv:1712.05855, 2017.

[243] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. Perceptual Ad High-
lighter. https://github.com/citp/ad-blocking, 2017. Accessed: 2021-06-22.

[244] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. The future of ad
blocking: An analytical framework and new techniques. arXiv preprint arXiv:1705.08568,
2017.

[245] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A Seshia. A
formal foundation for secure remote execution of enclaves. In ACM SIGSAC Conference on
Computer and Communications Security, pages 2435–2450, 2017.

[246] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014.

[247] Om Thakkar, Galen Andrew, and H Brendan McMahan. Differentially private learning with
adaptive clipping. arXiv preprint arXiv:1905.03871, 2019.

[248] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in Cryptol-
ogy - CRYPTO, pages 71–89. Springer, 2013.

https://github.com/citp/ad-blocking

BIBLIOGRAPHY 177

[249] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, 2008.

[250] Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturba-
tions. In Advances in Neural Information Processing Systems, 2019.

[251] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. In International Conference on Learning Representations, 2019.

[252] Florian Tramèr and Dan Boneh. Differentially private learning needs better features (or much
more data). In International Conference on Learning Representations, 2021.

[253] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security Symposium, 2016.

[254] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi. Sealed-
Glass Proofs: Using transparent enclaves to prove and sell knowledge. In IEEE European
Symposium on Security and Privacy, 2017.

[255] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. Ensemble adversarial training: Attacks and defenses. In International Conference
on Learning Representations, 2018.

[256] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh. Adversarial:
Perceptual ad blocking meets adversarial machine learning. In ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[257] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-Henrik Jacob-
sen. Fundamental tradeoffs between invariance and sensitivity to adversarial perturbations.
In International Conference on Machine Learning, 2020.

[258] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive at-
tacks to adversarial example defenses. In Advances in Neural Information Processing Systems,
2020.

[259] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In International Conference on Learning
Representations, 2019.

[260] uBlockOrigin. Issue 3367: Facebook. https://github.com/uBlockOrigin/uAssets/issues/

3367, Aug 2018. Accessed: 2021-06-22.

https://github.com/uBlockOrigin/uAssets/issues/3367
https://github.com/uBlockOrigin/uAssets/issues/3367

BIBLIOGRAPHY 178

[261] Zain ul Abi Din, Panagiotis Tigas, Samuel T. King, and Benjamin Livshits. Percival: Making
in-browser perceptual ad blocking practical with deep learning. In USENIX Annual Technical
Conference, 2020.

[262] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay, and Yang Wang. Smart,
useful, scary, creepy: perceptions of online behavioral advertising. In Symposium On Usable
Privacy and Security, page 4. ACM, 2012.

[263] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved execution. In
USENIX Security Symposium, 2017.

[264] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient out-of-order execution. In USENIX Security
Symposium, 2018.

[265] Ennèl van Eeden and Wilson Chow. Perspectives from the global entertainment & media
outlook 2018–2022. https://www.statista.com/topics/1176/online-advertising/, 2018.
Accessed: 2021-06-22.

[266] Antoine Vastel, Peter Snyder, and Benjamin Livshits. Who filters the filters: Understand-
ing the growth, usefulness and efficiency of crowdsourced ad blocking. In Measurement and
Analysis of Computing Systems. ACM, 2018.

[267] Riad S Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish. Verifiable
ASICs. In IEEE Symposium on Security and Privacy, pages 759–778, 2016.

[268] Riad S Wahby, Ye Ji, Andrew J Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and
Thomas Wies. Full accounting for verifiable outsourcing. In ACM SIGSAC Conference on
Computer and Communications Security, pages 2071–2086, 2017.

[269] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled Rényi differ-
ential privacy and analytical moments accountant. In International Conference on Artificial
Intelligence and Statistics, 2019.

[270] Craig E Wills and Doruk C Uzunoglu. What ad blockers are (and are not) doing. In IEEE
Workshop on Hot Topics in Web Systems and Technologies, pages 72–77, 2016.

[271] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, pages 5283–
5292, 2018.

https://www.statista.com/topics/1176/online-advertising/

BIBLIOGRAPHY 179

[272] Tom Woolford. Sentinel is online. https://adblockplus.org/blog/sentinel-is-online,
Jun 2018. Accessed: 2021-06-22.

[273] Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer
Vision, pages 3–19, 2018.

[274] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[275] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1492–1500, 2017.

[276] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto Perdisci,
and Wenke Lee. Understanding malvertising through ad-injecting browser extensions. In
International World Wide Web Conference, 2015.

[277] Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization of support
vector machines. Journal of Machine Learning Research, 10(Jul):1485–1510, 2009.

[278] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In IEEE Symposium on Security and Privacy,
pages 640–656, 2015.

[279] Andrew C Yao. Protocols for secure computations. In IEEE Symposium on Foundations of
Computer Science, pages 160–164, 1982.

[280] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu, Xiaojiang
Chen, and Zheng Wang. Yet another text CAPTCHA solver: A generative adversarial network
based approach. In ACM SIGSAC Conference on Computer and Communications Security,
2018.

[281] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and Justin Gilmer. A
Fourier perspective on model robustness in computer vision. In Advances in Neural Informa-
tion Processing Systems, 2019.

[282] Da Yu, Huishuai Zhang, Wei Chen, Tie-Yan Liu, and Jian Yin. Gradient perturbation is
underrated for differentially private convex optimization. In International Joint Conference
on Artificial Intelligence, 2019.

[283] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private
model publishing for deep learning. In IEEE Symposium on Security and Privacy, pages
332–349, 2019.

https://adblockplus.org/blog/sentinel-is-online

BIBLIOGRAPHY 180

[284] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758, 2020.

[285] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only prop-
agate once: Painless adversarial training using maximal principle. In Advances in Neural
Information Processing Systems, 2019.

[286] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh. Towards
stable and efficient training of verifiably robust neural networks. In International Conference
on Learning Representations, 2020.

[287] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Alitheia: Towards practical
verifiable graph processing. In ACM SIGSAC Conference on Computer and Communications
Security, pages 856–867, 2014.

[288] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei StevenWu, and Arindam Banerjee. Private
stochastic non-convex optimization: Adaptive algorithms and tighter generalization bounds.
arXiv preprint arXiv:2006.13501, 2020.

[289] Yingxue Zhou, Zhiwei Steven Wu, and Arindam Banerjee. Bypassing the ambient dimension:
Private SGD with gradient subspace identification. In International Conference on Learning
Representations, 2021.

[290] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. Measuring and disrupt-
ing anti-adblockers using differential execution analysis. In Network and Distributed System
Security Symposium, 2018.

[291] Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-kNN: Practical
differential privacy for computer vision. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 11854–11862, 2020.

	Abstract
	Acknowledgments
	Introduction
	Overview of Results
	Machine Learning Background

	I The Security Threat of Adversarial Examples
	The Threat Model of Adversarial Examples
	The Expectimax Game
	Adversarial Examples As a Necessary Attack Vector
	Choosing a Perturbation Set

	A Security Application: Evading Perceptual Ad-blockers
	Preliminaries and Background
	The Online Advertising Ecosystem
	Perceptual Ad-blocking
	Threat Model and Adversaries

	Designing Perceptual Ad-blockers
	General Architecture
	Approaches to Ad Detection

	Training a Page-based Ad-blocker
	Data Collection
	Evaluation and Results

	Evaluating the Robustness of Perceptual Ad-blocking
	Evaluation Setup
	Accuracy and Performance of ML classifiers.

	Attacking Ad Classifiers With Adversarial Examples
	Attack Model
	Overview of Attack Techniques and Results
	Algorithms for Adversarial Examples
	Results

	Attacks Beyond Misclassification
	Attacks Against Ad-blocker Actions
	Attacks Against Page Segmentation
	Attacks Against Training

	Discussion
	A New Arms Race
	Strategic Advantage of Adversaries and Lack of Defenses
	Beyond the Web and Vision

	Related Work
	Conclusion

	Limitations of Defenses: Multiple Perturbation Types
	Theoretical Limits to Multi-perturbation Robustness
	Adversarial Risk for Multiple Perturbation Models
	A Binary Classification Task
	Small Linf and L1 Perturbations are Mutually Exclusive
	Small Linf and Spatial Perturbations are Nearly Mutually Exclusive
	Affine Combinations of Perturbations

	New Attacks and Adversarial Training Schemes
	Experiments
	Results on MNIST
	Results on CIFAR-10
	First-order Adversarial Training and Gradient Masking on MNIST
	Affine Adversaries

	Discussion and Open Problems

	Limitations of Defenses: Excessive Invariance
	Norm-bounded Sensitivity and Invariance Attacks
	The Sensitivity and Invariance Tradeoff
	Generating Invariance-based Adversarial Examples on MNIST
	Generating Model-agnostic Invariance-based Adversarial Examples
	Evaluation
	Trading Perturbation-robustness for Invariance-robustness
	Natural Images

	The Overly-robust Features Model
	Formal Model and Analysis
	Experiments

	Discussion
	Conclusion
	Complete Set of Invariance Adversarial Examples

	II Privacy-Preserving Machine Learning
	Differentially Private Learning With Better Features
	Preliminaries
	Scattering Networks
	Differentially Private Stochastic Gradient Descent
	Differentially Private ScatterNet Classifiers

	Evaluating Private ScatterNet Classifiers
	Experimental Setup
	Model Architectures
	Results
	Analysis of Hyper-parameters

	How Do Handcrafted Features Help?
	Smaller Models Are Not Easier to Train Privately
	Models With Handcrafted Features Converge Faster Without Privacy

	Towards Better Private Deep Learning
	Improving Privacy by Collecting More Data
	Transfer Learning: Better Features from Public Data

	Additional Experiments
	On the Effect of Batch Sizes in DP-SGD
	Comparing DP-SGD and Privacy Amplification by Iteration
	DP-SGD With Poisson Sampling

	Conclusion and Open Problems

	Slalom: Faster Private Inference With Trusted Hardware
	Background
	Problem Setting
	Trusted Execution Environments (TEEs), Intel SGX, and a Strong Baseline
	Outsourcing Outsourced Neural Networks and Freivalds' Algorithm

	Formal Security Definitions
	Slalom
	Quantization
	Verifying Common Linear Operators
	Input Privacy

	Empirical Evaluation
	Implementation
	Setup
	Neural Network Details
	Results
	Results on a Standard CPU
	Parallelization

	Challenges for Verifiable and Private Training
	Conclusion

	III Conclusion

