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School of Computer and Communication Sciences

Master Thesis

August 14, 2015

Supervised by
Prof. J-P Hubaux

EPFL / LCA1



2



Abstract

We study fairness in algorithmic decision making, with the goal of proposing formal and
robust definitions and measures of an algorithm’s bias towards sensitive user features. The
main contribution of this work is a statistical framework for reasoning about equity in al-
gorithmic decisions, while also considering various constraints on users’ and the algorithm
vendors’ utilities. We first revisit previous notions of fairness from the literature, that are
based on different measures of the dependency between sensitive features and algorithmic
decisions. We illustrate several limitations of these measures, such as their failure to gener-
alize to non-binary sensitive features or algorithm outputs, and we propose a more general
and robust fairness measure based on mutual information, which has received little attention
so far. In particular, we show that our fairness measure produces significantly better char-
acterizations of the statistical significance of an algorithm’s bias, compared to the notion of
statistical parity introduced by Dwork et al. [17, 73].

We further discuss the inadequacy of previously considered fairness measures, in their
inability to detect large-scale discriminatory practices, that are due to algorithms with small
biases being applied on a global scale. We instigate the discussion on statistical hypothesis
tests, that, in spite of being standard tools in legal practices, have received little attention in
the context of algorithmic fairness. In this regard, we present another advantage of mutual
information, compared to other proposed fairness measures, in that it is directly linked to a
popular statistical goodness-of-fit test known as the G-test.

We further reason about situations, where the absolute parity of an algorithm may be
prohibitively at odds with the utility of an algorithm’s vendor or its users. We generalize
our fairness definitions to include various utilitarian constraints, with a particular focus on
discriminatory practices that are considered acceptable because of genuine business necessity
requirements. We describe a framework mirroring legal practices, that allows businesses to
discriminate users based on genuine task-specific qualification levels, in order to guarantee the
organization’s well-being.

Finally, we consider practical issues related to the detection of algorithmic biases from
empirical data, and propose a generic methodology, relying on cluster analysis techniques
and robust statistical testing, to reason about discrimination in different subsets of the user
population. We evaluate our methods on small artificial datasets, as well as on the Berke-
ley Graduate Admissions and Adult Census datasets, and illustrate how our techniques can
either discover discrimination hidden in particular user subsets, or reveal potential business-
necessary requirements that may account for an observed algorithmic bias.
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1 Introduction

With the rapid growth of information systems that collect and mine user data, an increasing
portion of people’s lives is becoming dictated by algorithmic decision making. While this ac-
cumulation of digital personalized data may benefit both companies and individuals, through
improved consumer models and personalized treatments for instance, it also harbors the po-
tential for discrimination on an unprecedentedly large scale. Indeed, following the ongoing
erosion of digital privacy, where sensitive information about users is disclosed either directly
or indirectly from their data, we are faced with the challenge of ensuring that these algorith-
mic decisions remain fair, and avoid exhibiting discriminatory biases towards features such
as gender, race or age for instance [31].

It has long been recognized that simply removing an attribute regarded as sensitive from
a user’s data is insufficient, as a variety of other non-sensitive attributes may be correlated
with it. For instance, the first name or ZIP code of a user may not be considered sensitive in
a particular situation, yet they could be strongly linked to the user’s ethnicity. An illustrative
example of this phenomenon can be found in an investigation from the Wall Street Journal,
that discovered that the online pricing scheme of Staples Inc, a famous office-supply chain
store, varied depending on a user’s location [71]. While a user’s location may be regarded as
a non-sensitive feature, and the pricing scheme appears unlikely to have been designed with
a discriminatory purpose in mind, the journalists noticed that Staples’ prices were typically
higher in neighborhoods with low average income. The price setting algorithm was thus dis-
covered to exhibit a discriminatory bias against a sensitive feature (income), that wasn’t even
part of the data that Staples collects about its users. A major challenge thus lies in design-
ing mechanisms, that reason about correlations between sensitive features and algorithmic
decisions, regardless of the ways in which the algorithm makes use of the sensitive data.

Additional difficulties arise from the fact that sensitive attributes may be linked to the
utility that users or businesses derive from a particular algorithmic decision. Law and policy-
makers have long studied the intrinsic and sometimes conflicting relations between fairness
and utility, in order to identify situations where one notion might be given priority over the
other. A robust model for reasoning about algorithmic fairness will therefore also incorporate
different notions of utility, both for users and businesses, and specify in which ways these
concepts interact.

Fairness Measures In recent years, researchers from the data mining, privacy and machine
learning communities have begun to investigate the problems of discovering [60, 58, 44, 74, 22]
and preventing [36, 37, 12, 44, 74, 38, 17, 73, 30, 22] algorithmic discrimination. These lines
of work have led to the introduction of various definitions of fairness, inspired by policy and
legal practices. All these works define fairness in terms of the dependency, or relationship
between an algorithm’s outputs and a user’s sensitive attributes, that can be estimated from
empirical data. Previously considered measures can be divided into 3 main categories.

• Ratio measures that consider the ratio between the proportions of outcomes for two
groups of users [60, 58, 17, 30, 22].

• Difference measures that consider the absolute difference between the proportions of
outcomes for two groups of users [36, 37, 12, 60, 58, 44, 74, 17, 73].
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• Information theoretic measures that consider the mutual information between the dis-
tributions of the outcomes and of the sensitive attributes [38].

After we formally introduce these measures, we will discuss possible extensions of ratio
and difference measures from binary to multivalued sensitive features and algorithmic outputs,
leading to issues that were overlooked by previous works. In regards to these limitations, we
argue that mutual information provides a more general and robust measure of algorithmic
bias, than other measures appearing in the literature.

As the problem we consider is that of quantifying and estimating an algorithm’s fairness
from empirical data, the statistical significance of our measurements also plays an important
role. We identify a number of scenarios, where one or the other of the mentioned measures
fails to detect or properly quantify discriminatory practices, if the statistical significance of
the measurements is omitted. In particular, we show that statistical parity [17, 73] is not
an appropriate measure of statistical dependency between random variables, and thus that
it is ill-suited for reasoning about fairness detection and prevention in algorithmic decision
making.

Previously considered fairness definitions such as a-protection [60, 58], ε-fairness [22] or
statistical-parity [17] rank an algorithm as unfair, if some ratio- or difference-measure of the
algorithm’s bias exceeds a policy-defined threshold. Although such threshold-fairness defini-
tions are naturally justified by current legal practices, where one or another method may
be used to unveil discrimination on a case-by-case basis, we argue that they are ill-suited
for reasoning about algorithmically-induced discrimination on a big-data scale. Indeed, we
show that because they disregard the absolute magnitude of a discriminatory practice, such
techniques fail to detect small inherent biases of algorithms, that are deployed and applied
on a very large scale.

Another technique introduced in the legal field for reasoning about discrimination from
empirical data is statistical hypothesis testing. We show that statistical tests of independence
provide a formal methodology, for detecting and quantifying any kind of discriminatory bias
in algorithmic decision making, by effectively measuring the likelihood, that algorithmic out-
puts are truly independent from sensitive features. In this setting, we identify an additional
advantage of mutual information over other proposed measures of fairness, in that it immedi-
ately yields a robust statistical test known as the G-test. Using this connection, we present a
formal definition and measure of algorithmic fairness, based upon an information-theoretical
statistical test of the independence between sensitive features and algorithmic decisions.

Fairness and Utility A limiting aspect of fairness measures, that are solely based upon
the dependency between sensitive features and algorithmic outputs, is that they are not
applicable to situations, where correlations between an algorithm’s decisions and a user’s
sensitive attributes may be either desirable or acceptable. We thus further investigate ways
to extend our fairness definition to cases where either users’ or business’s utilities are at odds
with absolute parity.

First of all, we consider scenarios where users may derive different utilities from an algo-
rithm’s outcomes. In ad-targeting for instance, it is reasonable to assume that a user’s utility
function will be highly correlated with sensitive attributes such as gender or age. Many
previous definitions of algorithmic fairness [12, 60, 58, 36, 37, 74, 22] rely on the simplify-
ing assumption that an algorithm’s outputs are either inherently ‘positive’ or ‘negative’, and
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are therefore ill-suited for such cases. In contrast, we show how to generalize our fairness
definitions to take into account user-utility in a straightforward way, by reasoning about the
statistical dependency between sensitive attributes and the utility derived from an algorithm’s
decision, rather than the decision itself.

A different and more subtle issue has to do with situations, where absolute fairness may
be prohibitively at odds with the utility of the business involved. Indeed, it might be the case
that a user’s sensitive attribute is highly correlated with the user’s qualification for some job,
or his credit-score for a new loan. There has been a vast amount of work in the legal commu-
nity focusing on defining and understanding the notion of business-necessity, which enables
justifying discriminatory practices in the presence of genuine utility requirements. We propose
a flexible framework for defining and measuring fairness in the presence of business-necessity
constraints, by considering alternative null-hypotheses for our statistical tests. Our approach
mimics legal practice, and additionally increases transparency, in that it shifts the task of
providing and justifying a business-utility requirement to the business itself. More precisely,
we expect the business to specify a utility function that classifies users into qualification lev-
els, based on a number of non-sensitive attributes. The question of whether this classification
represents a genuine business requirement will depend on policy governing the algorithmic
decision being considered. Given such a business-utility function, we show how to extend our
fairness measures to detect inherent discriminatory practices that are not explained by the
business’s utility requirements.

Statistically Robust Discrimination Discovery Using the new fairness definitions and
statistical testing framework that we propose, we further explore practical issues that must
be overcome, in order to design a robust system for the detection and analysis of algorithmic
biases from empirical data. We discuss different statistical fallacies, such as Simpson’s para-
dox and the multiple comparisons problem, that might arise in the context of discrimination
discovery, and we introduce a simple methodology, relying on cluster analysis techniques, to
detect and reason about discrimination arising in different subsets of the users. We show
how to identify easily interpretable user sub-populations, that can be defined in terms of
only a small number of non-sensitive attributes, and that are treated differently with respect
to the considered algorithmic task. Through a series of examples, we illustrate how these
clusters may enable the detection of both discriminatory practices arising only in particular
user sub-populations, as well as potential business requirements that account for an observed
bias. Combined with robust statistical testing tools, our techniques yield results about the
discriminatory biases of an algorithm, both in the population as a whole as well as in chosen
sub-clusters, that can then be evaluated according to contextual policies.

We implement a prototype of our proposed mechanism, and evaluate it on different
datasets including the famous 1973 Berkeley Graduate Admissions Data [9], as well as the
Adult Census Dataset 1. Our data-clustering and statistical testing framework produce re-
sults, that are consistent with previous analyses of these datasets from the literature, both
from a statistical and sociological perspective.

1https://archive.ics.uci.edu/ml/datasets/Adult
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Outline The rest of this work is organized as follows. In Section 2, we discuss algorith-
mic fairness in the absence of user or business utility constraints. We begin by introducing
previously considered definitions of fairness in Sections 2.1 and 2.2, and illustrate various
limitations of these approaches. We further focus on a fairness measure based on mutual
information, and illustrate its various advantages over other measures appearing in the lit-
erature. We then propose a more robust statistical testing framework for discrimination
discovery on a big data scale in Section 2.3. In Section 3, we extend our discussion to utility
constraints, first for users (Section 3.1) and then for the business itself (Section 3.2). We
review related prior work in Section 4. In Section 5, we discuss practical considerations of
our methodology from a system perspective. In particular, we focus on issues related to data
collection (Section 5.1), to the discovery of discrimination in data subsets (Section 5.2), and
to the design of robust statistical tests (Section 5.3). Section 6 presents some experimental
results, both on illustrative toy-examples, as well as on the Berkeley Admissions and Adult
Census datasets. We conclude and expose open questions and directions for future work in
Section 7. We provide some legal background on discrimination detection in Appendix A.
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2 Non-Utilitarian Fairness

Previous notions of algorithmic fairness defined in the literature all agree on the intuitive
idea that absolute fairness with respect to some sensitive attribute (in the absence of utility
constraints), is obtained whenever the algorithm’s output is independent of this attribute.
The different measures of fairness differ in the way that the level of dependency between
sensitive attributes and algorithmic decisions is quantified.

By solely considering interactions between some sensitive attribute and the algorithm’s
output, previous notions of fairness all view the algorithm as a black-box. As already men-
tioned, abstracting the inner workings of an algorithm is desirable, because the way in which
an algorithm uses a sensitive attribute internally (if at all), does not necessarily reflect on
the exhibited bias, as non-sensitive attributes correlated to sensitive ones can be the cause of
discrimination.

2.1 Preliminaries and Notation

Throughout this work, a capital letter Y denotes a discrete random variable over some al-
phabet Y. The distribution of Y is denoted P (Y ) and we write P (y) as a shorthand for
P (Y = y), where y ∈ Y. We denote statistical independence between Y and Z as Y ⊥ Z.

We consider users, whose collected data is represented by a (multidimensional) random
variable X ∈ X . Similarly, we denote a user’s sensitive attribute(s) by a variable S ∈
S. The data X may be correlated with the sensitive features S, as captured by a joint
distribution P (S,X), either because sensitive attributes are part of the collected data or
because of inherent dependencies between certain sensitive and non-sensitive features. The
decision-making algorithm A generates outputs O ∈ O by passing a user’s data X through a
conditional distribution P (O | X).

Note that the true distribution P (O | X) is unknown in general, since we assume black-
box only access to A. Thus, we will consider that we have access to some user dataset
D = {(x1, s1), (x2, s2), . . . , (xN , sN )}, of i.i.d. samples from P (S,X). The correlations be-
tween S and O must then be estimated from a number of collected samples of the form
(si, oi), where oi is the output produced by A on input xi. We denote the empirical joint dis-
tribution of S and O over D by P̂ (S,O). The marginal empirical distributions are then given
by P̂ (s) =

∑
o∈O P̂ (s, o) and P̂ (o) =

∑
s∈S P̂ (s, o). Furthermore, the empirical conditional

probability distribution of O given S is defined as P̂ (o | s) = P̂ (s,o)

P̂ (s)
.

The general approach taken by previous definitions, inspired by legal practices, consists
in selecting some measure of the dependence between the random variables S and O, and
classifying the algorithm as fair or non-discriminatory if the measured empirical dependence
between S and O over D falls below some policy-defined threshold α. We will refer to
definitions of this form as ‘threshold’ fairness.

An issue with this approach, that we will illustrate through a series of examples, is that
an algorithm, whose true bias falls below the policy-defined threshold, will be considered fair,
even if it leads to significant discrepancies when applied on an very large scale. As algorithmic
decision making is expected to become deployed and utilized in a global fashion, we believe
that a more robust measure of fairness would consist in classifying an algorithm as unfair,
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whenever we can assess with high certainty that the algorithm exhibits a bias (however small
it may be). Formally, in the absence of utility constraints, fairness is attained exactly when
the algorithm produces outputs O truly independent of sensitive features S.

Definition 1 (Non-Utilitarian Fairness). An algorithm A is fair with respect to a sensitive
feature S, if and only if O ⊥ S.

Given this definition, measuring the fairness of a given algorithm can be seen as an
instance of a statistical test of independence, where our goal is to assess, from the empirical
data, whether A exhibits any statistically significant bias or not. We will show that a fairness
measure based on mutual information, that was previously proposed in [38], provides a nice
link between ours and previously considered definitions of algorithmic fairness.

First of all, we will revisit the definitions of fairness from previous works, and illustrate
multiple advantages of mutual information over difference- and ratio- based measures of an
algorithm’s bias. Secondly, we show that the mutual information measure can also be directly
used in our hypothesis testing setting, through its natural connection to the G-test, a popular
statistical goodness of fit test. In Section 3, we will consider more general scenarios, where
independence between sensitive attributes and algorithm outputs may not be an acceptable
characterization of fairness, because of user and business utility constraints.

2.2 Threshold-Fairness

We begin by introducing different measures of fairness that previously appeared in the litera-
ture. We first focus on the case of a binary sensitive attribute S ∈ {s+, s−}, as is the case in
most of the prior work. It is usually assumed that one of the two attributes, s+, represents
the class of users ‘favored’ by the algorithm. We discuss possible issues when generalizing
some fairness measures to multivalued S further on. For ratio- and difference-based measures,
we use the terminology introduced by Ruggieri et al. [60, 58] based on the ‘lift’ measure, with
some changes in notation. We focus on their slift and sliftd measures, which also appear in
slightly different forms in [17, 22] and [36, 37, 12, 74, 17, 73]. The definitions from [60] also
contain a context of discrimination, which we discuss in more detail in section 5.2.

Definition 2 (Ratio Measures). For a sensitive attribute S ∈ {s+, s−} and some output
o ∈ O, the selection-lift is defined as

slift(s+; o) =
P̂ (o | s+)

P̂ (o | s−)
.

Definition 3 (Difference Measures). For a sensitive attribute S ∈ {s+, s−} and some output
o ∈ O, the difference-based selection-lift is defined as

sliftd(s
+; o) = P̂ (o | s+)− P̂ (o | s−) .

The ratio and difference selection-lifts capture the empirical ratio or difference, between
the probability of seeing some output for users with or without a specific sensitive feature.
To quantify the fairness of an algorithm A, Ruggieri et al. [60, 58] measure the dependency
between a sensitive attribute S ∈ {s+, s−} and the proportion of outputs o, where o is a
‘positive’ output providing some benefit to users, and users with attribute s+ are favored.
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Definition 4 (a-protection). Let f() be either the slift or sliftd measure, and a ∈ R a fixed
threshold. Then A is a-protective w.r.t f(), s+ ∈ S and o ∈ O, if f(s+, o) < a. Otherwise A
is a-discriminatory.

In the US, the so-called four-fifths rule, appearing in the Uniform Guidelines on Employee
Selection Procedures (UGESP) issued by the Equal Employment Opportunity Commission
(EEOC), can be seen as a specific instance of the a-protection definition. The rule states
that a ratio of selection-rates (or slift) greater than a = 1.25 will ‘generally be regarded [...]
as evidence of adverse impact’ [13]. Note that the slift and sliftd measures may yield very
different conclusions on whether a mechanism is discriminatory or not. For instance, for small
enough conditional probabilities, we may have sliftd ≈ 0, but slift arbitrarily high.

We now consider the mutual information measure used in [38]. In order to obtain a coher-
ent set of definitions, we first introduce a measure based on the Kullback-Leibler divergence
between P (S) and P (S | O = o) for a particular output o ∈ O. The mutual-information
I(S;O) between the sensitive features and algorithm outputs is then defined as the expected
value of this KL divergence over all outputs o ∈ O.

Definition 5 (Information Theoretic Measures). For a sensitive attribute S ∈ S and some
output o ∈ O, the Kullback-Leibler divergence between P̂ (S) and P̂ (S | O = o) is defined as

DKL(P̂ (S | O = o) || P̂ (S)) =
∑
s

P̂ (s | o) ln
P̂ (s | o)
P̂ (s)

.

While slift and sliftd intuitively capture how close P̂ (O = o | S) is to P̂ (O = o), the
KL divergence instead measures the distance between P̂ (S | O = o) and P̂ (S). The two ap-
proaches are directly connected through Bayes’ theorem, and both are valid characterizations
of the empirical dependency relation between S and O as shown in the following theorem.

Theorem 6. For a sensitive attribute S ∈ {s+, s−}, the following implications hold.

P̂ (S,O) = P̂ (S)P̂ (O) ⇐⇒ slift(s+; o) = 1, ∀o ∈ O
⇐⇒ sliftd(s

+; o) = 0, ∀o ∈ O
⇐⇒ DKL(P̂ (S | O = o) || P̂ (S)) = 0, ∀o ∈ O .

Thus, all the measures we have introduced somehow characterize the empirical indepen-
dence between S and O. While Theorem 6 shows that these methods are equivalent in the
limit where O and S appear independent, we are also interested in assessing the (in)fairness
of a particular algorithm A when complete independence is not attained on the sampled data.
We now discuss and illustrate various issues arising from Definitions 2-5 when we attempt
to extend them to multivalued sensitive features, or when estimating and quantifying the
dependency that A introduces between S and O.

2.2.1 Limitations of Previous Definitions

Symmetry The ratio- and difference-based measures introduced in [60] are inherently non-
symmetric, in the sense that slift(s+; o) 6= slift(s−; o) in general (and similarly for sliftd).
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Most previous works [12, 60, 58, 36, 37, 74, 22] assume that the fairness measure is with
respect to some minority or protected-by-law group with sensitive attribute S = s−, and that
the considered output o ∈ O is ‘positive’.

An issue with this approach is that it might not be known a priori whether A might
discriminate against one group of users or the other. For a binary feature such as gender,
for instance, we would like to detect both discrimination against women or men, with equal
quantification in both cases. The notion of statistical parity introduced in [17, 73] considers
the absolute value of sliftd to avoid this problem. An equivalent solution for the ratio measure
would be to consider the maximal value between slift(s+; o) and slift(s−; o) as in [17]. Note
that the Kullback-Leibler divergence metric is symmetric by definition.

Moreover, classifying outputs o ∈ O as either ‘positive’ or ‘negative’ might not be straight-
forward in general either. We discuss the problem of measuring the fairness of our algorithm
over multiple output values further on. Furthermore, in Section 3.1, we consider situations
where the utility perceived for a particular outcome may depend on sensitive features.

Multivalued Sensitive Features Ruggieri et al. [60] propose to extend their measures to
multivalued sensitive attributes S ∈ {v0, v1, . . . , vd}, by comparing P̂ (o | vi) to maxk P̂ (o | vk),
where o is a positive output. Thus, we compare users with sensitive feature vi to the users
with the most-favorable feature for obtaining output o. Again, this approach assumes that
we may classify outputs as either positive or negative a priori. With this approach, we obtain
d different measures of the algorithm’s bias, for each possible value taken by S.

Other works in which the slift or sliftd measures appear, have limited their analysis to
the particular case of a binary sensitive feature [36, 37, 12, 60, 58, 74, 17, 73, 22]. Kamiran
et al. [36] suggest that a multivalued sensitive attribute S ∈ {v0, v1, . . . , vd} can always be
transformed into a binary attribute S′ ∈ {v0, v̄0}, where S′ = v̄0 when S 6= v0. Such a
transformation may however fail to uncover discriminatory practices, as shown in the following
example. Let S = {black,white, hispanic} and assume we are concerned about discrimination
against black users. Suppose we use the transformation S′ = {black,not-black}, and consider
the data from Table 1, obtained from an algorithm deciding if a user should be hired or not.

S

Black White Hispanic
Applicants Hired Applicants Hired Applicants Hired

100 50% 100 80% 100 20%

S′

Black Not Black
Applicants Hired Applicants Hired

100 50% 200 50%

Table 1: Transformation from multivalued to binary sensitive features, that hides discrimi-
natory practices.

As we can see, after transformation, the output O appears completely independent of S′.
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However, the algorithm is not fair with respect to race since it discriminates against both
black and Hispanic users. To avoid this problem, we could obviously consider all possible
binary transformations of the sensitive features. However, we would ideally like to obtain
a single measure of an algorithm’s fairness, rather than one for each possible value of the
sensitive feature. In this sense, note that in contrast to the slift and sliftd measures, the
KL divergence measure directly allows for multivalued sensitive features S.

Extensions to Multivalued Outputs As we are interested in measuring the amount of
dependency that A introduces between S and O, we should consider some aggregation of
the measures from Definitions 2-5 for all possible outputs o ∈ O. Many previous works [12,
60, 58, 36, 37, 74, 22] consider a simplified setting with binary output o ∈ {o+, o−}, where
one output is assumed to be inherently positive. The fairness of an algorithm is then simply
assessed through either of the slift(s+, o+) and sliftd(s

+, o+) measures.
Dwork et al. [17] and Zemel et al. [73] introduce a more general notion called statistical-

parity, that aggregates sliftd measures by summing over all possible outputs.

Definition 7 (Statistical Parity). For a sensitive attribute S ∈ {s+, s−}, an algorithm A
empirically satisfies statistical parity up to bias ε if

DTV (P̂ (O | S = s+), P̂ (O | S = s−)) =
1

2

∑
o∈O

∣∣∣P̂ (o | s+)− P̂ (o | s−)
∣∣∣ ≤ ε ,

where DTV (P,Q) is the total-variation distance between distributions P and Q.

This definition is limited to the case of a binary sensitive feature. Note that when O is
itself a binary variable, statistical parity reduces to the absolute value of the sliftd measure.
We will see in Section 2.2.2, that when O is multivalued, the total-variation distance does not
seem to be an adequate measure of the statistical significance of the dependency between O
and S, and thus should be avoided as a measure of algorithmic fairness.

In addition to being easily extendable to multivalued sensitive features, the Kullback-
Leibler divergence can also be generalized to multiple outputs, yielding the mutual information
measure between O and S, appearing for instance in [38].

Definition 8 (Mutual Information). For an algorithm A, the empirical mutual information
between S and O is defined as

Î(S;O) = EO[DKL(P̂ (S | O = o) || P̂ (S))] =
∑
s∈S

∑
o∈O

P̂ (s, o) ln

(
P̂ (s, o)

P̂ (s)P̂ (o)

)
.

Intuitively, mutual information is a measure of two variables’ mutual dependence. It
quantifies how much information the sensitive feature S provides about the algorithm’s output

O. Mutual information can be normalized (see [19]) as Înorm(S;O) = Î(S;O)

min{Ĥ(S),Ĥ(O)} ∈ [0, 1],

where Ĥ(Y ) is the empirical entropy of a random variable Y . In this form, Înorm(S;O)
represents the proportion of information that one variable provides about the other, relative
to the minimum entropy of the two. An interesting property of mutual information is its
symmetry, Î(S;O) = Î(O;S). This implies that we may reason about an algorithm’s fairness
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both in terms of what the sensitive feature tells about the outputs, as well as what the
outputs reveal about sensitive features, a problem seemingly related to privacy protection.
This apparent duality between fairness and privacy has been noted by a number of researchers,
and we discuss its implications in more detail in Section 4.

2.2.2 MI-Fairness

In a similar fashion to a-protection or statistical parity, we can define a ‘thresholded’ notion
of fairness from mutual information.

Definition 9 (MI-Fairness). With respect to a sensitive attribute S, an algorithm A empiri-
cally satisfies ε-MI fairness if Î(S;O) ≤ ε , and ε-normalized MI fairness if Înorm(S;O) ≤ ε .

As we have seen, a main advantage of MI-fairness compared to other definitions of
threshold-fairness is that it immediately handles multivalued sensitive features and algorithm
outputs. Furthermore, no prior assumptions on the identity of the discriminated group or
on the relative utilities of the algorithm’s output is required. Finally, we now also show that
MI-fairness produces more consistent characterizations of the empirical dependency between
S and O than the statistical parity measure from [17, 73].

Comparing Statistical Parity and MI-Fairness We present a simple example illustrat-
ing the limitations of the total-variation measure, in appropriately characterizing the level of
empirical dependency between S and O. Consider algorithms A, A′ that decide which users to
promote in a company. Both algorithms output a value o ∈ {President,Manager,Employee}
to indicate whether the user will be promoted to president, to manager or remain a nor-
mal employee. The sensitive attribute we consider is gender. Table 2 displays two sampled
data-sets of algorithmic decisions by A or A′ over 40,000 employees.

A Male Female

President 20 5
Manager 9,980 9,995
Employee 10,000 10,000

DTV = 7.50 · 10−4

Înorm = 1.74 · 10−4

A′ Male Female

President 20 20
Manager 9,970 9,995
Employee 10,010 9,985

DTV = 1.25 · 10−3

Înorm = 1.13 · 10−6

Table 2: Comparison between total variation and mutual information as measures of fairness.
DTV denotes the total variation distance as in Definition 7 and Înorm denotes the normalized
mutual information as in Definition 9.

The total variation measure yields a lower value for A than for A′, yet A′ intuitively
seems much more fair than A. Indeed, the small differences in proportions introduced by
A′ are much more likely to have been introduced by randomness or noise due to sampling,
compared to the ones from A. We see here that simply summing up sliftd measures fails to
take into account how significant a difference in proportion is, and thus does not produce an
an appropriate measure of the statistical significance of the empirical dependency between
the variables S and O, at least for our purpose.
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We will see in Section 2.3, when we introduce the statistical G-test, that for datasets of
fixed size, mutual information is directly linked to (an approximation of) the likelihood that
the considered algorithm is unbiased. In the above example, A′ is likely to be unbiased, with
small differences explained by the randomness of the sample, while A appears to be biased
with high certainty, given the observed data 2.

Therefore, when using the total variation as a measure of fairness ([17]) or as a quantity to
optimize when training a fair classifier ([73]), there is a risk of considering algorithms with a
clear bias such as A as more fair than algorithms such as A′, that intuitively appear unbiased.
Finally, we note that Dwork et al. [17] also introduce the D∞ measure, which can be seen as
an analog to DTV where sliftd is replaced by slift. We can easily construct similar examples
to the one above, for which D∞ would yield results incompatible with mutual information.

2.2.3 Statistical Significance and Hypothesis Testing

Having discussed different ‘threshold’ measures of fairness, we now illustrate their limitations
when considering the notion of fairness given in Definition 1. As noted by Peresie, a concern
with setting thresholds for bias measures is that this introduces a ‘permissible level of dis-
crimination’ [54], meaning that a process might consistently exhibit a bias slightly below the
threshold, and still be considered as fair.

As a motivating example, consider an algorithm A that decides whether a user will be
hired or not. The sensitive attribute is gender, with half of the users expected to be male
and half female. The algorithm is inherently biased, in that it systematically hires 51% of the
male candidates it sees and only 49% of the female candidates (any other small bias could
be considered). Note that while A exhibits only a small bias, it is still discriminatory, in the
sense of Definition 1, since its outputs explicitly depend on sensitive features. Unless this
bias can be explained by user- or business-utility considerations as discussed in Section 3, the
algorithm should still be classified as unfair, if its inherent bias leads to large imparities when
applied on a global scale.

To illustrate this, we sample random datasets D of size 200, 20,000 and 2,000,000 and
report the values of the slift(male, hired), sliftd(male, hired) and Î(S;O) measures in Ta-
ble 3. The true measures of I, slift and sliftd are as follows.

I = 2.0 · 10−4, slift = 1.041, sliftd = 0.02 .

When empirical data is used to measure the discrimination of an algorithm, Ruggieri et
al. [60] suggest adding confidence intervals to the slift and sliftd measures, in order to get
a better indication of the statistical significance of these values. They provide a more robust
definition of a-protection, again for S ∈ {s+, s−} and some positive output o for which users
with attribute s+ are favored.

Definition 10 (a-protection). Let f() be either the slift or sliftd measure, and a ∈ R a fixed
threshold. Denote the confidence interval of f(s+, o) at significance level β as [L1, L2]. Then
A is a-protective at significance level β w.r.t f(), s+ and o, if L2 < a. A is a-discriminatory
at significance level β if L1 ≥ a.

2Specifically, the G-test yields a p-value (the probability that a fair algorithm would produce results as
extreme as the ones observed), of 0.97 for A′, and of 0.008 for A
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Male Female
|D| Applicants Hired Applicants Hired

200 100 54.00% 100 51.00%
20,000 10,015 51.01% 9,985 48.87%

2,000,000 1,000,941 51.07% 999,059 49.00%

|D| Î slift sliftd

200 4.512 · 10−4 1.059± 0.264 0.030± 0.138
20,000 2.290 · 10−4 1.044± 0.028 0.021± 0.014

2,000,000 2.143 · 10−4 1.042± 0.003 0.021± 0.001

Table 3: Random samples of sizes 200, 20,000 and 2,000,000 of outcomes of algorithm A.
The slift and sliftd measures are given with confidence intervals at significance levels of 5%.

As we can see in Table 3, all empirical fairness measures approach their true value as the
sample size grows large. Furthermore, our confidence in these values also increases (results on
the asymptotic normality of the empirical mutual information [40] yield a confidence interval
of [1.86 · 10−4, 2.43 · 10−4] at significance level 0.05 for the largest sample).

Yet, suppose that the true value of the algorithm’s bias (whether measured through Î,
slift or sliftd), falls slightly below the policy-defined threshold appearing in Definitions 9
or 10. Then, we would consider A to be non-discriminatory, even when given access to large
datasets in which the algorithm’s inherent bias is clearly apparent. Consider the notion of
a-protection from Definition 10, with a fairness threshold a of 5%, and a significance level β
of 5%, A is considered a-protective with respect to both the slift and sliftd measures, if we
consider our largest sampled dataset. The algorithm’s bias (in the sense of slift or sliftd)
is indeed below 5%, yet our sampled data indicates that over 21,000 more men than women
were hired nonetheless, which should be a clear indication of bias.

This issue is addressed in the US Uniform Guidelines On Employee Selection Procedures
(UGESP), in the context of the four-fifths rule (Appendix A). The rule states that a threshold
of 1.25 for the ratio of selection-rates in a hiring process should generally be considered as
evidence of a discriminatory bias, but that ‘smaller differences in selection rate may never-
theless constitute adverse impact, where they are significant in both statistical and practical
terms’ and that ’greater differences in selection rate may not constitute adverse impact where
the differences are based on small numbers and are not statistically significant ’ [13].

In this sense, the defined ratio threshold of 1.25 can be understood merely as an easily
understandable and usable guideline, in the context of a more general fairness notion based
on the statistical significance of an observed bias. Thus, with regard to these legal guidelines,
Ruggieri et al.’s approach appears to be flawed, in that it considers an algorithm as fair, even
if there is overwhelming statistical evidence that the algorithm does exhibit a small bias. A
similar approach is taken by Luong et al. [44]. A more appropriate formulation of Defini-
tion 10 would be to view A as unfair, whenever there is high confidence that the mechanism
exhibits any bias, and thus violates the fairness notion from Definition 1.
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This alternative approach to fairness, which we investigate now, consists in using statistical
hypothesis tests to determine, from our sampled data, whether a given algorithm is biased or
not. The definitions of threshold-fairness that we have seen so far (extended with confidence
intervals), classify an algorithm as unfair, if there is a sufficient level of certainty that its bias
lies above a pre-defined threshold. With statistical hypothesis tests, we will instead consider
an algorithm to be unfair, whenever we have sufficient certainty (usually characterized by a
p-value) that the algorithm exhibits any kind of bias in a systematic manner. As we will see,
mutual information provides an interesting link between the two approaches, as it is directly
related to a popular statistical test known as the G-test.

2.3 Towards Statistical Testing for Discrimination Discovery

Statistical tests are a common method used in legal practices to provide evidence of discrim-
inatory behavior [25]. A comprehensive overview of the subject is given by Paetzold and
Willborn in [50]. Additionally, a large body of work has focused on the specific case of testing
for discrimination in hiring procedures [57, 27, 54].

In regard to fairness measures based on ratio or difference thresholds, these works high-
light similar limitations to the ones we presented previously, namely that they fail to detect
widespread discrimination that appears due to small biases. In contrast, statistical tests of
independence have the advantage of detecting any level of bias, given that the sampled dataset
is large enough. Legal scholars have argued that in traditional litigation scenarios, such as
the hiring procedures of a small company, the availability of sufficient data samples may be
questionable. However, we can expect algorithmic decision making to be applied on a much
grander scale, and thus potentially producing substantial amounts of data, from which even
small biases can be detected with high certainty.

2.3.1 Statistical Fairness and the G-test

The null hypothesis corresponding to the notion of fairness given in Definition 1 states that
the algorithm is unbiased, or that O and S are statistically independent. A standard pro-
cedure to assess the validity of such an hypothesis, is to compute some test statistic and
its associated p-value, which characterizes the probability that an unbiased algorithm would
yield to discrepancies as large as those observed on the sampled data. The corresponding
generic definition of fairness (for some given test statistic), that we call statistical fairness, is
stated as follows.

Definition 11 (Generic Statistical Fairness). Let S ∈ S be a sensitive attribute, A be an
algorithm with outputs O ∈ O, and (s1, o1), . . . , (sN , oN ) be a collection of samples. Let p be
the p-value obtained from some relevant test statistic for the null hypothesis S ⊥ O. Then, A
is statistically-fair with respect to S at significance level β, if p ≤ β.

As we will see in Section 3, the statistical-testing framework allows for an extremely
generic and robust notion of fairness, where various utility constraints can be expressed as
alternative null hypotheses.

Many statistical independence tests have been considered in legal practices [63, 54], the
most standard being Pearson’s chi-squared test, Z-tests or Fisher’s exact test. In this work,
we focus on an alternative goodness-of-fit test known as the G-test or log-likelihood ratio
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test [65]. The G-test is an approximate non-parametric test, that is recommended for large
datasets, for which exact tests are prohibitively expensive [47]. The chi-squared test is actually
a second-order Taylor approximation of the G-test [33] and provides a weaker approximation
to the theoretical chi-squared distribution [32]. In addition to its theoretical and practical
justifications, the G-test also has an interesting link (see Proposition 13) to the fairness
measure based on mutual-information that we discussed previously. To formally introduce
the G-test, we need some additional notation. From the samples (s1, o1), . . . , (sN , oN ), we
build a contingency table over variables S and O. For each pair (s, o) ∈ S × O, we compute
the frequency fs,o of observed samples of the form (s, o). The G-test is then given by

G = 2 ·
∑
s∈S

∑
o∈O

fs,o · ln
(
fs,o
Es,o

)
, (1)

where Es,o is the expected number of observed samples (s, o) if the null-hypothesis is valid.
In the case of an unbiased algorithm, we have Es,o = N · P̂ (s)P̂ (o). If the null hypothesis is
true, the distribution of G is asymptotically chi-squared, with df = (|S|−1) · (|O|−1) degrees
of freedom. The p-value p can then be obtained in the same way as for Pearson’s chi-squared
test. Specifically, p = 1 − F (G; df), where F (x; k) is the cumulative distribution function of
the chi-squared distribution with k degrees of freedom. The use of the G-test leads to the
following instance of statistical fairness.

Definition 12 (Statistical-Fairness). Let S ∈ S be a sensitive attribute, A be an algorithm
with outputs O ∈ O, and (s1, o1), . . . , (sN , oN ) be a collection of independent 3 samples from
P (S,O). Let p be the p-value obtained from the G-test statistic over the observed data. Then,
A is statistically-fair with respect to S at significance level β, if p ≤ β.

Unless specified otherwise, in the remainder of this work we will use the term statistical
fairness to refer to the specific fairness notion of Definition 12.

2.3.2 Relating MI-Fairness to Statistical Fairness

The following two simple results show a direct relation between fairness measures based on
statistical hypothesis testing and on the notion of (non-normalized) MI-fairness.

Proposition 13. The G-test satisfies G = 2N · Î(S;O) .

Proof. This is a well-known result, which we will prove here for completeness. By the defi-
nition of empirical probability, we have that fs,o = N · P̂ (s, o) and by the null hypothesis of
independence, Es,o = N · P̂ (s)P̂ (o). Plugging into (1), we have

G = 2 ·
∑
s∈S

∑
o∈O

N · P̂ (s, o) · ln

(
N · P̂ (s, o)

N · P̂ (s)P̂ (o)

)

= 2N ·
∑
s∈S

∑
o∈O

P̂ (s, o) · ln

(
P̂ (s, o)

P̂ (s)P̂ (o)

)
= 2N · Î(S;O) .

3The assumption of sample independence is necessary for many popular statistical tests, such as the G-test,
Pearson’s chi-squared test, or Fisher’s exact test. We discuss this assumption, and mention alternative tests
with weaker requirements in Section 5.3.2.
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Theorem 14. Let S ∈ S be a sensitive attribute, A be an algorithm with outputs O ∈ O,
(s1, o1), . . . , (sN , oN ) be a collection of samples, and df = (|S| − 1) · (|O| − 1). Then, with
respect to S, A is empirically ε

2N -MI fair, if and only if it is statistically-fair at significance
level β = 1− F (ε; df).

Proof. By the previous proposition, A is empirically ε
2N -MI fair, if and only if G ≤ ε. As for

a fixed k, F (x; k) is a strictly increasing function, the p-value satisfies p ≤ 1−F (ε, df), if and
only if G ≤ ε.

A nice consequence of Proposition 13 and Theorem 14 is that, for a fixed sample size N ,
mutual information is a direct measure of the likelihood that an algorithm is biased, and thus
a valid measure of fairness in the sense of Definition 1. If we recall the comparison between
statistical parity and MI-fairness given in Table 2, the fact that mutual information between
S and O is empirically much lower for A′ than for A thus provides a direct indication that
A is more likely to be biased. In contrast, the total-variation measure would lead to believe
that A is the fairer of the two algorithms.

We also reconsider the situation in Table 3, reproduced here for convenience. Recall that
the true mutual information between S and O is I = 2.0 · 10−4. As the sample size increases,
Î approaches the true value. For large datasets, we expect to have Î ≈ I. Yet, the larger our
sample is, the larger the G-test statistic becomes as well, since it grows as N · Î. Thus, unless
our algorithm is fair (which means we have I(S;O) = 0), the G-test statistic will naturally
become significant if enough data is available. For the above samples, the G-test yields p-
values of respectively 0.67, 2.47 · 10−3 and 2.03 · 10−188. At standard significance levels of
5% or 1%, the null hypothesis would be rejected and the algorithm classified as unfair in
the last two samples, where the gender bias is clearly apparent. For the first sample, the
limited amount of available data would not allow us to conclude, with high certainty, that
the algorithm is indeed unfair.

Male Female

|D| Applicants Hired Applicants Hired Î

200 100 54.00% 100 51.00% 4.512 · 10−4

20,000 10,015 51.01% 9,985 48.87% 2.290 · 10−4

2,000,000 1,000,941 51.07% 999,059 49.00% 2.143 · 10−4
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3 Utilitarian Fairness

While the independence between algorithmic outputs and sensitive features appears to be a
desirable fairness property in general, there are a number of possible scenarios where complete
parity is prohibitive, because it is significantly at odds with user’s or business’s utility.

The considerations for user utility and business utility are rather different. When the
amount of utility that a user derives from an algorithmic output depends on some sensitive
feature, then an algorithm satisfying Definition 1 may still be considered unfair, because some
protected class of users enjoys less benefit than another. In such a case, a biased algorithm is
desirable from the users’ perspective, if in turn the algorithm exhibits no bias on the average
perceived utility.

Alternatively, the amount of utility that a business perceives for some algorithmic deci-
sion may be dependent on sensitive features, for instance if some protected attribute strongly
correlates to a users’ qualification with respect to the particular decision at hand. A simple
example from [60] is to consider a truck company, whose hiring policy is based on appli-
cants being in possession of a truck-driver’s license. If it appears that men are more likely
than women to meet the company’s requirements, then a gender bias in the company’s hir-
ing procedure could be deemed as an acceptable case of business necessity. If the business
requirement is genuine, true parity is undesirable from the business’s perspective because it
drastically impacts the business’s functionality and efficiency.

3.1 User Utility

Consider an ad-placement algorithm for a shampoo brand. The cosmetic company would
like to provide ads targeted to a user’s hair texture, which happens to be strongly correlated
to sensitive features such as gender or ethnicity. Suppose we conduct an analysis of the
algorithm’s decisions, in showing ads for four products A,B,C,D, over groups of users identified
by gender and ethnicity. Products A and B are male shampoos, and C and D are female
shampoos. In addition, products B and D are targeted for specific hair textures, that are
more prominent in black people. The analysis yields the following results.

Male Female
White Black White Black

A 80 20 0 0
B 20 80 0 0
C 0 0 100 0
D 0 0 0 100

Table 4: Ad placements of four shampoo products for users classified by gender and ethnicity.
Products A,B are targeted towards males, and products C,D towards females. Products A,C
are mainly targeted towards white users and products B,D towards black users.

The ad placement algorithm exhibits a clear bias between genders and ethnic groups. Yet,
this need not be an indication of any discriminatory practices. Suppose the cosmetic company
ran a survey asking users to rate their products as either 0 (not interested) or 1 (interested),
with the following results.
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Male Female
White Black White Black

A 1 1 0 0
B 1 1 0 0
C 0 0 1 0
D 0 0 0 1

Table 5: User preferences for products A,B,C,D. Ratings are binary with values 0 (not
interested) and 1 (interested).

We can interpret Table 5 as follows. Men only like products targeted towards males,
but don’t seem to care about particular hair types. In contrast, women only like shampoos
branded as female and targeted towards their specific hair texture. Combining the results
from Tables 4 and 5, it becomes clear that all users actually receive ads corresponding to
their preferred product(s), regardless of any sensitive attributes. This (simplistic) example
motivates a utilitarian definition of fairness, by shifting our attention from algorithmic outputs
to the utility that users perceive from these outputs, and considering the correlations between
this utility and sensitive features.

This example also illustrates the limitations of many fairness definitions appearing in
previous works [12, 60, 58, 36, 37, 74, 22], that either implicitly or explicitly assume that
algorithmic outputs can be classified as inherently positive or negative. Note that in our ex-
ample (see Table 5), outputs are also classified as positive or negative but a crucial difference
is that this classification is not universal, but dependent on sensitive features. Additionally,
we could also consider more general classifications, where different outputs provide a range
of levels of utility to users.

To characterize a user’s utility, we introduce an additional random variable U over some
discrete alphabet U . Given the random variables S and O, a user’s utility U is defined by
a conditional mapping P (U | S,O). Thus, the distribution of user utility for a particular
algorithmic output may vary depending on the value of the sensitive attribute. Our definition
of fairness can then be reformulated in terms of a user’s utility as follows.

Definition 15 (User-Utilitarian Fairness). An algorithm A is fair with respect to a sensitive
feature S and user-utility U , if and only if U ⊥ S.

Estimating and quantifying the fairness of a given algorithm in the user-utilitarian setting
relies on the same notions of MI-Fairness and Statistical Fairness as in the non-utilitarian
case, except that we replace the algorithmic output O by its utility U . Thus, in addition
to a dataset D of user attributes and the corresponding algorithmic outputs, we will also
assume that we are provided with a value u ∈ U denoting each user’s perceived utility from
A’s output.

In the remaining part of this work, we will make the simplifying assumption (unless
specified otherwise) that the perceived utility for an algorithmic decision is the same for
all users. We will thus continue reasoning about correlations between S and O rather than
between S and U . Our results can be extended to the user-utilitarian case in a straightforward
manner, by appropriately replacing outputs O by a user’s perceived utility U .
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3.2 Business Utility

The general business goal of algorithmic decision making could be defined as that of con-
structing and applying some matching or classification from user data to outcomes, such as
to maximize the business’s notion of utility. On the one hand, a business will aim to increase
its utility by collecting and utilizing as much data about its users as is available. On the other
hand, achieving fairness in the sense of Definition 1 requires that the algorithm’s outputs be
influenced only by the set of collected user attributes that are not strongly correlated to any
sensitive features. When designing a fair decision making algorithm, the business thus faces a
standard trade-off between fairness (which can always be achieved by using a data-oblivious
algorithm) and its own utility (which can always be maximized by considering all the avail-
able data). However, this problem might fail to have any acceptable solution, in situations
where some user attribute is both strongly correlated to sensitive features and indispensable
in order for the business to achieve a viable utility. For instance, a business might have par-
ticular user requirements, for decisions such as hiring or credit allocation, that must be met
to guarantee the business’s sustainability. If a user’s tendency to meet these requirements is
highly dependent on some sensitive attribute, a bias in the decision making process might be
considered acceptable because it is the result of a legitimate business necessity.

The so-called business necessity defense is a standard legal practice, where a business,
facing accusations of discriminatory practices, provides sustainable evidence that its biased
decision making is due to the necessity of users meeting certain crucial requirements [28, 56,
66]. This notion has received rather little formal treatment from the literature on fairness
in algorithmic decision making so far. We review some notable exceptions in Section 4, and
provide additional background on anti-discrimination legislation in Appendix A.

3.2.1 Conditional Fairness

We consider an algorithmic task for which genuine business requirements can be represented
as classes (or qualification levels) K ∈ K. A user’s class depends on a small number of non-
sensitive attributes, that are part of the user’s data X. We denote these necessary features
by a random variable B ∈ B. Instead of having a user’s class depend solely on these features,
we will consider a more general setting where a user’s class may also depend on other users’
classifications. This will allow us to model business strategies that base decisions on a user’s
relative qualification with respect to other users.

Formally, a business provides a mapping h : Bn → Kn, defined for any n ≥ 1, such that an
algorithm’s bias is explained away, if we take into consideration the task-specific clustering of
users into different classes K. We then define fairness under business necessity constraints as
the conditional independence of S and O, given K.

Definition 16 (Business-Utilitarian Fairness). An algorithm A is fair with respect to a sen-
sitive feature S and class K ∈ K, if and only if

1) There is a set of features B and a mapping h : Bn → Kn, that are a valid representation
of a genuine business requirement.

2) O ⊥ S | K.
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The first condition of Definition 16 corresponds to the current legal practice of assessing
the validity of a business’s qualification requirements under policy. The second condition can
be evaluated from empirical data, by extending our fairness measures to take into account
user classes K. We will need the following additional notation. From a collected dataset D =
{(x1, s1), (x2, s2), . . . , (xN , sN )}, we extract business necessary attributes {b1, b2, . . . , bN}, and
compute the classes {k1, k2, . . . , kN} from the business’s mapping h. Using the algorithm A
as a black-box, we obtain N samples of the form (si, oi, ki).

We begin by introducing conditional mutual information, a standard measure of the con-
ditional dependency of two random variables, given a third. Using this notion, we obtain a
generalization of MI-Fairness (Definition 9), for situations with business utility constraints.

Definition 17 (Conditional Mutual Information). For an algorithm A, the empirical condi-
tional mutual information between S and O, given K is defined as

Î(S;O | K) = EK [Î(S;O) | K] =
∑
k∈K

P̂ (k)
∑
s∈S

∑
o∈O

P̂ (s, o | k) ln

(
P̂ (s, o | k)

P̂ (s | k)P̂ (o | k)

)
.

The normalized measure Înorm(S;O | K) is given by
Î(S;O | K)

min
{
Ĥ(S | K), Ĥ(O | K)

} .

The generic, test-agnostic notion of statistical fairness from Definition 11 can also be
extended to conditional statistical fairness, by considering the alternative null-hypothesis
S ⊥ O | K. A particular instantiation of conditional statistical fairness, using the G-test,
is obtained as follows. From our samples (s1, o1, k1), . . . , (sN , oN , kN ), we build a three-way
contingency table with frequencies fs,o,k. The null hypothesis of conditional independence

yields the expected frequency Es,o,k = N · P̂ (k)P̂ (s | k)P̂ (o | k). The G-test is then given by

GK = 2 ·
∑
s∈S

∑
o∈O

∑
k∈K

fs,o,k · ln
(
fs,o,k
Es,o,k

)
. (2)

If the null hypothesis is verified, GK ’s distribution is asymptotically chi-squared with (|S|−
1)·(|O|−1)·|K| degrees of freedom. Definition 12 is then extended in a straightforward manner
to assess the fairness of an algorithm under business necessity constraints, by considering the
test measure GK instead of G. Furthermore, a more general form of Proposition 13 also holds
in this setting.

Proposition 18. The G-test in (2) satisfies GK = 2N · Î(S;O | K) .

Proof. From (2), and using that fs,o,k = N · P̂ (s, o, k) = N · P̂ (k)P̂ (s, o | k), we get

GK = 2 ·
∑
s∈S

∑
o∈O

∑
k∈K

N · P̂ (k)P̂ (s, o | k) · ln

(
N · P̂ (k)P̂ (s, o | k)

N · P̂ (k)P̂ (s | k)P̂ (o | k)

)

= 2N ·
∑
k∈K

P̂ (k)
∑
s∈S

∑
o∈O

P̂ (s, o | k) · ln

(
P̂ (s, o | k)

P̂ (s | k)P̂ (o | k)

)
= 2N · EK [Î(S;O) | K] = 2N · Î(S;O | K) .
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Thus, in the presence of business necessity constraints, there is also an equivalence between
MI-Fairness and statistical hypothesis testing, analogous to the result of Theorem 14.

3.2.2 Examples

To illustrate the flexibility of this framework, we now present two possible mappings h for
businesses that require job applicants to hold specific educational degrees. The first mapping
will correspond to a business requesting a minimal qualification, while the second mapping
corresponds to a business asking for the highest available qualification, thus considering a user’s
relative qualification with respect to all other applicants. Both of these simple examples of
business utility functions can then easily be converted into null-hypotheses, indicating what
the expected fair outcomes on a particular dataset should be. As an example, we consider
a business with 120 open job positions. The sensitive feature is gender, and applicants are
ranked based on the their university degree (bachelors, masters or PhD) as follows.

Male Female

PhD 60 24
Master 240 156
Bachelor 150 270

We first consider a business that requires a Master degree as a minimal qualification. Thus,
there are two qualification levels K = {qualified, non-qualified} based on the feature
B ∈ {PhD, Master, Bachelor} and h(B) = qualified ⇐⇒ B ∈ {PhD, Master}. The fair
null hypothesis states that 120 out of the 480 qualified applicants get hired, regardless of
gender. Thus, conditioned on being qualified, 25% of both the men and women should be
hired as illustrated in Table 6.

Male Female
Applicants Hired Applicants Hired

PhD 60 25% 24 25%
Master 240 25% 156 25%
Bachelor 150 0% 270 0%

Total 450 16.7% 450 10%

Table 6: Expected fair hiring if the minimal requirement is a Masters degree.

Alternatively, the business could require the maximal available qualifications to fill in the
40 positions. The mapping h thus classifies a user as either most-qualified, qualified

or unqualified based not-only on his own degree B, but also on the degrees of all other
applicants. The fair null hypothesis, displayed in Table 7, then states that all 84 applicants
with a PhD degree get hired (K = most-qualified), followed by 36 out of the 396 applicants
with a Masters, regardless of gender.

For both examples in Tables 6 and 7, the hiring algorithm would be considered statistically
unfair in the sense of Definition 1, because a clear dependency between gender and hiring is
apparent. However, if the necessary qualifications we introduced are accepted by policy as
genuine business requirements, fairness in the sense of Definition 16 is satisfied.
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Male Female
Applicants Hired Applicants Hired

PhD 60 100% 24 100%
Master 240 9% 156 9%
Bachelor 150 0% 270 0%

Total 450 18.2% 450 8.4%

Table 7: Expected fair hiring if the business ranks applicants by highest available university
degree.

3.2.3 Classifier Composition

Given business-necessity requirements, expressed in terms of a mapping h from a set of fea-
tures B to a class K, we can essentially view a fair algorithm as consisting of two functions, g
and h, as illustrated below. Users are first clustered, based on business requirements, through
the application of h. The mapping h takes as input business necessary features B, that are
part of the user’s data X, and outputs a class K = f(B). The second function g acts only on
a user’s class K, as well as on the remaining non-sensitive features deemed as not necessarily
essential to the classification task at hand, denoted X−B, and outputs the decision O. The
notion of conditional fairness introduced in Definition 16, states that the algorithm is fair, if
h represent a valid business requirement, and if the outputs of g are independent of sensitive
features S, for each class k ∈ K. Equivalently, for each class k, g should act as a fair classifier
in the sense of Definition 1.

X 

g	
  

B 

h	
  

K 

O 

X-B 

Figure 1: A fair two-stage classification of user’s in the case of business necessary features.
The function h maps business-essential features to a class K. Function g combines K and
additional features X−B to output a decision O. The mechanism is fair if O is conditionally
independent of sensitive features S, given the business classification K.
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4 Related Work

4.1 Fair Data Mining and Classification

The study of discrimination in data mining was instigated by Pedreschi, Ruggieri and Turini,
who introduced the concept of discriminatory association rules based on lift-measures [53].
In later work [60, 58], they introduce the definitions of a-protection and propose a series of
data-mining algorithms for detecting discriminatory associations.

Building upon difference- and ratio-based measures of fairness, further research from the
data-mining and machine learning communities has mainly focused on the prevention of
discrimination, through the construction of discrimination-aware classifiers. These works
broadly fall into three different categories. The so-called data-massaging strategy consists in
modifying data labels in the training set, such as to minimize the bias of the classifier on the
test data [36, 37, 74, 44, 22]. In contrast, the post-processing strategy trains a classifier on the
raw discriminatory data and then transforms the obtained classifier to achieve fairness [12, 30].
Finally, the regularization strategy adds a regularizer to the classifiers objective function, that
penalizes discriminatory biases [12, 37, 38, 73]. To the best of our knowledge, the work of
Kamishima et al. [38] is the only one that explicitly considers mutual information as a measure
of a classifier’s bias.

A different approach is taken by Dwork et al. [17] in their ‘Fairness through Awareness’
framework. They consider the problem of building a randomized classifier, that optimizes an
arbitrary loss function under fairness constraints. They assume the existence of an arbitrary
task-specific similarity metric between users. Our notion of business-utility from Definition 16
can be seen as a concrete and simple example of such a metric, where users are considered
as equal for a task, if they share some necessary qualifications. As we have argued in Sec-
tion 2.2.2, the fairness measures of [17, 73], that are based on either the total-variation norm
(statistical parity) or the D∞ metric, appear to be poor measures of the statistical significance
of an algorithm’s bias.

4.2 Information Flow Control and Fair Ad Targeting

Fairness has also been investigated in the context of information flow control, with the goal
of understanding how a user’s data is being transmitted and used by different entities in
accordance with contextual policies [7, 70, 15]. Recently, a special focus has been given to
discrimination detection in ad targeting [67, 42, 69, 14]. The general methodology used in
these works consists in simulating a large number of fake web users, in order to measure
how a triggered variation of some sensitive attribute may influence the type of ads that are
displayed. As such, these methods may only detect discrimination that is directly caused by
sensitive attributes. In contrast, works on algorithmic fairness, including our own, consider
the more general problem of detecting discriminatory practices, even if they emanate from
non-sensitive attributes that happen to be correlated to sensitive ones. In this context, it is
essential to consider real user data, rather than fabricated simulations, in order to capture
the true underlying correlations between multiple user attributes.

Interestingly, although they have been largely ignored in the data-mining and machine
learning literature on algorithmic fairness, statistical testing methods are standard tools used
in works on fairness in ad targeting. In particular, Tschantz et al. [69, 14] recently proposed
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a rigorous and formal methodology for reasoning about information flow experiments, by
relying on a class of exact statistical tests known as permutation tests. We will discuss
practical considerations related to statistical testing in more detail in Section 5.

4.3 Fairness, Privacy and Mutual Information

Many researchers have noted the intrinsic dual relationship between fairness and privacy [17,
73, 22]. From our notion of fairness (Definition 1), an algorithm is fair if its outputs are
independent of the sensitive features. On the one hand, this implies that a user’s sensitive
features reveal nothing about the output he will obtain. This corresponds to the standard
notion of parity or equity between sensitive groups. On the other hand, it also implies that
the algorithm’s outputs reveal nothing about the sensitive features, which can be seen as a
privacy guarantee. This inherent connection between privacy and fairness is directly captured
by the mutual-information measure, since I(S;O) = I(O;S). Therefore, in some sense, an
algorithm is only as fair, as it is private towards sensitive features. In view of this dual-
ity, some works have suggested to measure fairness in terms of the predictability of sensitive
features given the outputs, using specific types of classifiers such as SVMs [22] or logistic
regression [14]. We believe that in this context as well, mutual information provides a more
general measure of fairness, as it is well known to provide unconditional upper bounds on any
classifiers accuracy, as a consequence of Fano’s inequality [21, 18]. Intuitively, the more infor-
mation O provides about S, the more accurate an optimal classifier may be in predicting S.
Formally, the error rate of a classifier that predicts S from O (the proportion of misclassifica-
tions of S), is lower-bounded in terms of H(S | O) = H(S)−I(S;O), where H(S) is constant.

In an early work on privacy in data-mining, Agrawal and Aggarwal proposed mutual infor-
mation as a quantification of privacy loss [4]. It was later noted in [20] that mutual information
only guarantees average-case privacy and thus may not give satisfactory protection to outliers
with rare sensitive features, or against extremely rare privacy-breaching algorithmic outputs.
In contrast, worst-case measures of privacy such as differential privacy [16] aim at providing
unconditional protection to all users. Zemel et al. [73] have proposed a similar distinction for
fairness, by considering both group fairness, the notion of fairness appearing in this work, and
individual fairness, which asks that ‘similar’ individuals receive similar outputs. We discuss
individual fairness in more detail in Section 4.5.

The general problem that Zemel et al. [73] consider is that of mapping user data to
intermediate representations, such that the mapping preserves as much information about
the data, while simultaneously hiding a binary sensitive attribute (and thus being fair). The
authors note that their approach is closely related to the information bottleneck method [68],
the aim of which is to compress some variable X, while preserving mutual information about
another variable Y . As we have seen however, the statistical parity measure used in [73] is
not quite equivalent to the mutual information measure appearing in the original framework.
Makhdoumi et al. [45] use similar methods for the problem of mapping user data to a privacy-
preserving representation, by minimizing the mutual information between representations and
sensitive features, while maximizing the preserved information about the original data.
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4.4 Utilitarian Fairness

Considerations of the utility associated with perfect equity have been remarkably absent from
many previous works on algorithmic fairness. The question of user-utility, in particular, does
not seem to have received any attention so far. As we already mentioned, Dwork et al. [17] con-
sider the optimization of a generic loss function under fairness constraints, for users regarded
as similar for the classification task at hand. It would thus seem that diverging user-utilities
could be seemingly integrated into the optimized function. However, the fairness constraints
they consider are expressed as equity constraints over the distribution of outcomes of the
classifier, and not their associated utilities. Thus, if users with different utility criteria are
regarded as similar with respect to the classification task, they must obtain similar outcomes,
which is unfair to the users perceiving lower utility. If instead, these users are regarded as
non-similar, then the algorithm may assign arbitrary outcomes to all users, and thus minimize
the global loss-function without any fairness guarantees.

We now discuss previous works’ considerations of business necessity, and how they relate
to the definitions we introduced in Section 3.2.

The mechanism in [17] relies on a task-specific similarity metric for users, that could
incorporate notions of business-necessary features. Contrary to current legal practices, where
the burden of justifying the requirements of a task are left to the business, Dwork et al. envision
this similarity metric being part of the public domain, and proposed or imposed by some
external entity. Note that asking the business itself to describe a general metric is prohibitive,
because assessing the fairness of such a metric might be as challenging as measuring the
fairness of the decision-making algorithm in itself. However, it also seems unreasonable to
assume that some external body could define a similarity metric consistent with the specific
business requirements of any particular business. In our approach, instead of providing a
general distance measure between all users, the business proposes a clustering of users into
task-specific classes or qualification levels, based on only a few non-sensitive attributes. As
is the case in current legal practices, such a classification will have to be evaluated under
existing policies to determine whether it meets a genuine business requirement.

In their framework, Ruggieri et al. [60, 58] suggest that a business may argue against a
discrimination allegation, by identifying a non-sensitive attribute, representative of a genuine
business requirement, and that ‘explains’ most of the algorithm’s bias. Our approach is
comparable, although we focus on the more robust and generic fairness definitions based on
statistical hypothesis testing that we introduced. Furthermore, we also consider more general
business requirements than ones that can be represented by a single non-sensitive attribute.

Finally, Zliobaite et al. [74] propose to separate an observed bias into explainable discrimi-
nation, represented as a qualification score obtained from all the non-sensitive attributes, and
bad discrimination based on sensitive attributes. As for many previous works on algorithmic
fairness, their analysis is limited to binary sensitive features and outputs (one of which is
known to be positive), as it makes use of the sliftd measure. Our approach, which is concep-
tually similar, covers more general situations such as multivalued attributes or user-specific
utilities. Instead of considering all non-sensitive features as potentially explanatory, we ex-
pect business requirements to be expressed using only a small number of essential features,
such as to enforce transparency and justifiability of a bias in the decision-making process.
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4.5 Individual Fairness

The notion of fairness we considered in this work asks that an algorithm’s outputs be unbiased
for specific groups of users, as defined by a set of sensitive features. As such, the fairness
measures we considered in Section 2, including the ones from previous works, can be seen as
measures of the average-case fairness of an algorithm, over the protected user populations. As
with notions of average-case privacy, mentioned previously, measures of group fairness may
not give appropriate protection to certain data outliers. For instance, consider an algorithm
that generates outputs for 500,000 males and 500,000 females, with all users getting the same
outputs, except for user John Doe. With respect to gender, the algorithm would be considered
fair, as the algorithm’s bias is too small to be deemed as significant by any of the fairness
measures we considered 4. However, unless John is somehow vastly different from the other
considered users, the algorithm is absolutely unfair from his point of view.

Dwork et al. [17, 73] have proposed to distinguish between the notions of group fairness,
asking that users from protected groups receive similar outcomes on average, and individual
fairness, asking that users deemed as similar, with respect to the algorithmic task at hand,
be treated similarly. A task-specific similarity metric between users is assumed to be defined
and made available by policy-makers. Our notion of business-necessary features, introduced
in Section 3.2, can be seen as a particular case of such a similarity metric. We will also see
in Section 5.2, that cluster analysis can be used to learn a representation of different user
sub-populations, that are regarded as different under the algorithm’s classification task. A
different approach is taken by Luong et al. [44], who compare a user’s outcome with that of
it’s k-nearest-neighbors, thus relying on a task-agnostic similarity metric.

A potential issue with the approach of Dwork et al., is that they reason about individual
fairness in terms of proportions of outcomes. Indeed, they consider an algorithm to be indi-
vidually fair, if the distributions of outcomes for similar users are close. Imagine an algorithm
for setting health-care premiums, that simply samples a premium uniformly at random, be-
tween $0 and $1,000,000, for each user. This algorithm is of course non-discriminatory, with
respect to any sensitive feature. However, it is difficult to view it as fair to the individual,
even if every user basically gets the same ‘chances’. Essentially, the a priori outcomes may be
equal for all users, but the a posteriori outcomes can be highly unequal. This simple example
is directly related to the question ‘when is a lottery fair?’ [62, 11]. As noted by Sher [62], a
lottery is intuitively fair, when all participants have ‘equal claims to a good that cannot be
divided among them’. This notion of (non)-divisibility appears to be key. For instance, if we
consider a job offer with 100 equally qualified applicants, only one of them can get the job,
so in this case choosing one of the applicants at random appears fair.

Perhaps, a better notion of individual fairness could be obtained by viewing a classification
algorithm as a particular case of a resource allocator, and require that similar users receive
a similar amount of resource shares, up to sub-divisibility. In the context of our health-care
premium example, the individually-fair outcome would be for all users to receive the same
premium, as monetary amounts are ‘infinitely’ sub-divisible. For the job-offer situation, the
available position is not sub-divisible and should thus be fairly allocated at random over all

4We could also suppose that both John and Jane Doe receive some alternate treatment, in which case
absolutely no gender-bias occurs.
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equally-qualified applicants. There are numerous works on the fairness of resource allocation
in the field of economics [5], which could serve as an inspiration for the development of a
more robust definition of individual fairness, in the context of algorithmic decision making.
We leave this question open for future work, and do not expand further on it here.
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5 Practical Perspectives

Having discussed different fairness definitions, and having proposed a generic statistical frame-
work for reasoning about discrimination both in the presence, or absence, of utility constraints,
we now consider the problem of designing a practical, robust and scalable system for the de-
tection of widespread algorithmic biases.

The main design goals we wish to address can be expressed as follows.

1. Our solution should be able to handle different types of fairness measures, with or
without user- or business-utility constraints, depending on the data provided by the
system’s user.

2. We should not only measure the algorithm’s bias over the whole user-population, but
also in meaningful sub-populations of the users, with regard to the algorithm’s clas-
sification task. The analysis of these user-clusters should help us identify either dis-
criminatory practices occurring only in certain data niches, or alternatively potential
business-necessary features.

3. The hypothesis that we test, which may provide evidence of various discrimination
contexts or potential explanatory features, should have a simple and easily interpretable
representation.

4. Our system should scale to large datasets and multivalued sensitive features and outputs,
and rely on robust statistical testing techniques.

We introduce a simple pipeline, illustrated in Figure 2, consisting of four main processing
steps: a data collection phase, a cluster analysis phase, a interpretable hypothesis generation
phase and a statistical testing phase. We discuss these stages in detail further on and explain
how they contribute to the expressed design goals.
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Figure 2: A generic data pipeline for statistical fairness tests.

We first introduce practical considerations regarding the collection of data in Section 5.1.
In particular, we consider situations where the sensitive attribute S might not be part of
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the collected user data, but is inferred from some external knowledge source. We also also
address additional steps required for cases dealing with user- or business-utility constraints,
and how business-necessary features may be inferred from empirical data. In Section 5.2, we
will be concerned with the difficult problem of discovering discriminatory practices arising in
subsets of our data, while simultaneously guarding against certain famous statistical fallacies,
such as Simpson’s paradox. We show that data clustering can serve as a robust and scalable
mechanism to analyze discrimination arising in different data niches, as well as identify po-
tential business necessary features, the validity of which will depend on contextual policies.
In particular, we will focus on decision-tree algorithms, that directly yield a simple and eas-
ily interpretable model of the underlying decision-making algorithm. Finally, in Section 5.3,
we review some commonly-used statistical tools to guarantee the robustness of our fairness
measures, and discuss their scalability for large datasets.

Prior work on the design of systems for measuring algorithmic fairness has been rather
limited in its scope. DCUBE, proposed by Ruggieri et al. [59] appears to be the only example,
to the best of our knowledge, of a system to detect discriminatory practices by analyzing real
user data. However, as we have seen, their fairness metrics seem to be inherently limited
to binary attributes, and assume a priori knowledge about which group is discriminated
against, and which output is considered positive. Their work also doesn’t consider statistical
hypothesis testing methods, which form an integral part of our solution for detecting small yet
widespread discriminatory practices. Alternatively, a large body of work on discrimination
in ad targeting [67, 42, 14] has focused on building systems that uncover situations where
a simulated modification of a users sensitive features triggers a significant variation in the
displayed ads. Our goal is more general, in the sense that we also wish to discover algorithmic
biases that are not directly caused by sensitive features, but rather by other features that are
inherently correlated to sensitive attributes in the considered user population.

5.1 Data Collection, Utility and External Knowledge

For the fairness measures we introduced in Sections 2 and 3, we assume the existence of a
dataset of tuples (si, oi) sampled from the joint distribution of S and O. Until now, we have
implicitly assumed that the sensitive features S were available as part of the collected user data
X, and thus that our statistical tests could directly be applied on the available dataset. As
noted by Ruggieri et al. [60], we may also wish to discover discriminatory practices against
sensitive attributes that are not part of the collected user data, for instance because the
collection of such data is illegal. Although the data S may not be available explicitly, it may
be the case that it can be inferred through some external source of knowledge. As a concrete
example, suppose we are interested in detecting discrimination against users with low salary,
even though income is not part of the collected data. If our dataset contains a user’s ZIP
code, age or education level, we may be able to accurately infer income information from
publicly available aggregate data such as that provided by the US Census Bureau 5.

Formally, we can view sources of external knowledge as an empirical joint distribution
P̂ (S,X) between sensitive attributes and collected data, that is estimated from publicly avail-
able data sources. Because S is not part of the collected data, and is thus not provided as

5http://www.census.gov
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an input to the algorithm, we can make the assumption that S and O are conditionally in-
dependent given X (this means that two users with the same data X, but different sensitive
attributes S expect to receive the same outputs). Then, we can estimate the joint probability
between S and O as follows.

P̂ (s, o) =
∑
x∈X

P̂ (s, o, x)

=
∑
x∈X

P̂ (s, o | x)P̂ (x)

=
∑
x∈X

P̂ (s | x)P̂ (o | x)P̂ (x)

=
∑
x∈X

P̂ (s, x)P̂ (o | x) .

The third equality follows from the conditional independence of S and O given X. The
joint probability P̂ (S,X) is our external knowledge, and the conditional probability P̂ (O | X)
can be estimated from the collected user data and algorithmic outputs. Given P̂ (S,O), P̂ (S)
and P̂ (O), we can estimate the mutual information between S and O and compute the G-test
(or any other statistical test based on a contingency table between S and O). Concretely, a
user of our system should provide either a sensitive attribute, as part of the collected data,
or empirical statistics on the distribution of the sensitive attribute over the available dataset.

When reasoning about fairness with utility constraints, we further assume the presence,
in the collected data, of either a utility value U (for user utility), or a qualification level K
(for business utility). In Section 3.1, we modeled a user’s utility for a given output by some
probability distribution P (U | S,O), capturing the fact that users with different sensitive
features might derive different utilities from outputs. Here again, we will assume that this
model is empirically known, meaning that P̂ (U | S,O) has previously been estimated, from
user studies for instance. Then, in order to evaluate the independence between S and U , we
can use the fact that

P̂ (s, u) =
∑
o∈O

P̂ (s, u, o) =
∑
o∈O

P̂ (u | s, o)P̂ (s, o),

where P̂ (s, o) can be estimated over the collected data.

As discussed in Section 3.2.3, in the case of business-necessity requirements, we can think
of a fair algorithm as a composition of two functions (or classifiers) h and g. We know that
h should depend only on a small number of essential features B, and we also assume that
the function can be represented or interpreted in a simple way, since its validity should be
assessed under contextual policies. We can distinguish three application scenarios for our
system, depending on the information provided by the user.

• If the user can provide a representation of the mapping h and the corresponding neces-
sary features B, the qualifications K can simply be computed for each user and added
to the collected data. We are then left with the problem of assessing the conditional
fairness of the classifier g, given a particular user class.
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• Alternatively, the user could provide only a list of features B, that he deems essential to
the classification task, but no concrete mapping h. A model for a potential function h
could then be inferred from the data. For this, we can first learn an easily interpretable
classifier for the outputs O, given the features B. For each discovered class K, we
further analyze the dependence between sensitive features and algorithmic outputs. If
clustering users based on business requirements K can explain any exhibited algorithmic
bias, the discrimination could be justified through the necessary attributes B.

• If the user provides neitherB nor h, we may still attempt to learn a simple representation
of the classification algorithm, from which potential functions h and g could be inferred,
depending on which features could be regarded as essential for the task at hand. We will
see in Section 5.2, that cluster analysis techniques may lead to the discovery of potential
business-necessary attributes, the validity of which is a matter of policy governing the
particular context in which the algorithmic decision-making is applied.

For the remainder of this work, we will assume that we are given neither a complete
mapping h nor essential features B. We will thus consider learning a general interpretable
model of the underlying algorithm, from which potential business-necessary features could be
inferred.

5.2 Subset Discrimination

When measuring the fairness of a given algorithm, one must carefully consider how the pop-
ulation of users u is defined, such as to detect discriminatory practices that may appear only
in specific subsets of the data. An algorithm might not be significantly gender-biased in gen-
eral, but only in certain contexts, for instance by exhibiting a bias against married women
older than 50. Here martial status and age are considered to be non-sensitive features, that
represent a particular context of discrimination, a terminology introduced by Ruggieri et
al. [60, 58].

5.2.1 Simpson’s Paradox

More generally, the failure to consider appropriate contexts of discrimination may lead to a
situation commonly referred to as Simpson’s Paradox, where effects that manifest in subsets
of the data disappear or are reversed when considering the dataset as a whole. Examples
of Simpson’s paradox have been observed in various studies, notably in social sciences [39],
and could lead to possibly wrong or misleading conclusions about a mechanism’s (un)fairness.

Consider the following simple example, of an algorithm that decides whether a user will
receive a line of credit. The sensitive attribute we consider is gender. When asking for a
loan, users indicate the reason for their demand, which is part of the collected data used by
the algorithm. Suppose all users are either looking to buy a new car or a new house. In the
example data displayed in Table 8, the credit decision is empirically independent of the user’s
gender, when the full dataset is considered. However, when focusing on those users with the
intent to purchase one particular item, clear gender discrimination is apparent.
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Purpose
Male Female

Applicants Credit Applicants Credit

Buy Car 2,000 75% 1,000 50%
Buy House 2,000 25% 3,000 50%

All 4,000 50% 4,000 50%

Table 8: Discrimination in two data niches that cancel out when considering the full data.
Males are favored when asking for credit to buy a car and females are favored for house
purchases. Overall, men and women receive credits in equal proportions.

A famous and illustrative real-world example of Simpson’s paradox is the (supposed) gen-
der bias in UC Berkeley’s graduate admissions for the fall of 1973 [9]. The overall admission
figures showed that male candidates were significantly more likely to be admitted than female
candidates, supposedly indicating that the admission process was discriminatory. However,
when the admission results of individual departments are considered separately, there is actu-
ally evidence of a small bias in favor of women. Thus, considering each individual department
as a particular data subset leads to different results than those reflected in the dataset as a
whole. If it is accepted that each of the university’s departments may set their own admis-
sion rates, the algorithm’s bias is essentially accounted for. The apparent paradox can be
explained by the fact that female candidates had a higher tendency to apply to departments
with low admission rates overall.

5.2.2 Mining Discrimination Contexts

Ruggieri et al. [60, 58] refer to the problem of discovering biases in data subsets as the
inductive problem in discrimination discovery, and introduce the concept of a context of
discrimination, in which the fairness of the algorithm is measured. They propose a simple
algorithm that mines all frequent itemsets with some minimal support from the dataset,
and extracts contingency tables between sensitive features S and outputs O. The context of
discrimination is then given by the remaining attributes in the itemset.

A potential issue with their approach, is that it doesn’t easily scale to non-binary at-
tributes, or large datasets. As the size of the dataset (or the number of attributes) increases,
the number of itemsets with a statistically significant frequency can grow extremely large,
implying that the number of hypotheses to test also explodes. The problem of multiple
hypothesis testing, that we introduce in Section 5.3, becomes problematic in such a case.

5.2.3 Cluster Analysis and Decision Trees

We propose a rather different methodology compared to the one from Ruggieri et al. [60, 58],
that trades exhaustiveness for statistical robustness, for the detection of biases in data subsets.
Instead of considering all possible discrimination contexts that appear in the dataset with
some minimal frequency, we will focus only on a smaller number of significant user subsets,
unveiled by standard data clustering techniques. By applying robust statistical methods as
well as corrections for multiple hypothesis testing, we will be able to guarantee that our con-
clusions are indeed statistically meaningful, for those user sub-populations that we uncovered.
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Cluster analysis is a well-known method to deal with issues related to Simpson’s paradox,
by uncovering significant data niches to be considered in isolation [39]. In order to discover
data subsets in which the algorithm’s bias strongly deviates from the population-wide bias,
we will first look to identify different sub-populations, for which the algorithm’s ‘behavior’
differs. For instance, in the credit example in Table 8, the algorithm grants credits (regardless
of gender) in 2

3 of the cases to users who wish to buy a car, but only for 2
5 of the users willing

to buy a house. Similarly, in the Berkeley study, admission rates (again regardless of gender)
vary greatly from one department to the other. Intuitively, these clusters correspond to user
sub-populations, that are implicitly regarded as different under the algorithm’s classification
task. Identifying and analyzing these clusters can lead to the discovery of contexts of discrim-
ination (as in the credit allocation example), or of potential business-necessity features, as in
the Berkeley study. Indeed, if it is accepted that the different university departments can fix
their own admission rates, then the supposed gender-bias is essentially accounted for. In the
context of the framework from Section 3.2, we would say that the mapping of applicants to
different classes K, based upon the particular department they applied for, represents a valid
requirement that justifies the bias found in the population overall.

Note that it is always trivially possible to define user clusters in such a way that no intra-
cluster bias exists, simply by grouping users based on their sensitive attributes. Alternatively,
we can always exhibit some intra-cluster bias by grouping users with opposite sensitive features
and outputs. This is a central issue arising in the analysis of correlations in data subsets,
commonly known as the Texas sharpshooter fallacy 6, that we obviously wish to avoid. For this
reason, we apply cluster analysis and discrimination detection in two separate, independent
phases. We begin by looking for clusters of users, that are regarded as similar with respect to
the algorithm’s classification task, and then test, whether the algorithm exhibits a significant
bias over the discovered sub-populations.

If a discriminatory bias appears in some user cluster, we are additionally interested in
representing the corresponding context of discrimination in simple interpretable terms, in
order to understand which group of users the algorithm appears to discriminate against.
We thus focus on the discovery of clusters that have a simple descriptive form, using a
small number of the non-sensitive user attributes. This step can intuitively be regarded as
attempting to learn a simple representation or model of the black-box classification algorithm
that was applied on the data.

Understanding an algorithm’s decision process in a simple expressible form can help us,
not only to discover discriminatory biases in specific user populations, but also to uncover
explanatory attributes, that account for an observed bias. The discovery and analysis of
such features may help us get a better understanding of potential business requirements, that
justify an algorithm’s discriminatory behavior. Indeed, if an algorithm exhibits a bias on the
whole population, but this bias disappears when considering clusters defined by a small set
of attributes B, this clustering is a representation of potential business-necessary qualifica-
tions, the validity of which must be evaluated under contextual policies. If instead, some bias
persists, or appears in some user cluster, this can be viewed as potential evidence that the
algorithm truly discriminates based on sensitive features in this particular sub-population.

6http://en.wikipedia.org/wiki/Texas_sharpshooter_fallacy
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Previous works that considered discrimination contexts have mainly focused on finding user
sub-populations that exhibit a significant bias, and not on discovering whether a supposed
discrimination over a dataset may disappear, when taking into account natural clusters of
users formed by some set of explanatory features.

In regard of the above discussion, our proposed approach will consist of three generic
stages. We first look to discover meaningful clusters, unveiled by the algorithm’s decision
process. We then form simple and interpretable hypotheses about the algorithm’s bias in
the different discovered sub-populations, and finally test the statistical validity of these hy-
potheses. We emphasize that it is important to consider the interpretability of user sub-
populations prior to the hypothesis testing phase. Indeed, if a significant bias is discovered
in some (generic) user cluster, there is no guarantee that a simple human-understandable
representation of this cluster would also exhibit a statistically significant bias.

We now focus on a particular instantiation of the discussed pipeline, where cluster analysis
and interpretable hypothesis generation are combined into a single step, by making use of a
simple and natural class of clustering algorithms based on decision-tree classifiers. The main
advantage of decision trees over other classification and clustering techniques is that, by
design, they can yield data clusters, with respect to the classification task at hand, that are
defined and easily interpretable using only a small number of features. Intuitively, a decision-
tree classifier aims to represent an algorithm’s decision process, by repeatedly splitting the
data over some feature value. The leaves of the tree represent data clusters that are classified
similarly. In turn, the path from the root to a leaf provides an easily interpretable encoding of
the sub-population corresponding to this particular cluster. Further advantages of decision-
tree algorithms, over common methods such as K-Means, Mixture Models or Dimensionality
Reduction, include their ability to handle both numerical and categorical attributes, as well
as multivalued outputs in a rather straightforward manner. In turn, a known weakness of
decision-trees is their tendency to over-fit, by creating overly-complex and unstable decision
structures. We discuss some protections against over-fitting, that directly follow from our
design goals, further on.

We now discuss how decision-tree clustering can be incorporated into our data pipeline.
We note that other techniques, that also yield simple representations of user sub-populations,
could alternatively be considered. We discuss some potential candidates in Section 6.5.

We begin by splitting the available data into a training set and a test set. The training
set will be used to identify meaningful clusters, and the statistical tests will be applied to the
test set, so as to be independent of the model selection. The sensitive features are removed
from the training set, as we do not want users to be further clustered based on these fea-
tures. To guard against over-fitting, and to ensure that the identified clusters only depend
on a small number of non-sensitive features, we bound the height of the learned tree model
to some small value. We further set a threshold for the minimal size of a leaf cluster, again
as a standard defense against over-fitting, but also to preserve some meaningfulness for our
statistical tests 7. These parameters could either be fixed, user-defined, or selected through

7We note that more complex methods, such as boosting and random forests, could be applied to obtain
more robust decision trees, but at the expense of the simple interpretability of the clusters we discover. We
discuss possible extensions of our model, by making use of generic feature selection methods in Section 6.5.
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cross-validation, in which case we further need to extract a validation set from the training
data. Finally, statistical hypothesis tests are applied both to the full test set, as well as to the
identified clusters (also on the test set). Note that we are potentially performing multiple and
non-independent statistical tests, and must therefore adjust our conclusions accordingly, as
we discuss in more detail in Section 5.3. The results of our tests, as well as the learned tree-
model, are output and presented to the system’s user. Particular conclusions concerning the
validity of the identified discriminatory practices, or business-necessary features, will depend
on context and on policies governing the particular algorithmic task and sensitive features
being considered.

We mention that our approach differs from the one of Kamiran et al. [37], whose goal is
to learn a non-discriminatory decision tree, in order to obtain a fair classifier. In contrast, we
use decision trees as a means of finding meaningful and interpretable user clusters, in which
we then test for discriminatory biases.

Decision-trees also appear in the work of Luong et al. [44], with the similar goal of find-
ing interpretable descriptions of discriminated subsets. The main difference is that they
first discover discriminated individuals, using a form of k-nearest neighbor classification,
and then train a decision tree solely to obtain a simple interpretation of the discriminated
sub-population. A subtle but important issue with their approach is that they first look
for sub-groups exhibiting discrimination, and then attempt to interpret these results using
decision-tree classifiers. This could result in potentially misleading conclusions, because the
significant discrimination exhibited in some sub-groups does not necessarily persist in the
derived simple interpretations of these sub-groups. This is a reason why our focus is first on
the discovery of simple interpretations of user clusters, followed by discrimination detection
in the sub-populations defined in these simple terms.

5.3 Robust Statistics

5.3.1 Estimators and Approximations

While theoretically sound, many statistical methods are based on results, that hold only in
the asymptotic range as the size of the dataset grows to infinity. For instance, the G-test we
introduced in Section 2.3 is known to asymptotically approach a chi-squared distribution, if
the hypothesis of independence holds. In practice, the inherent ‘finiteness’ of our datasets
must be taken into account, in order to assess the validity of our statistical conclusions. Fur-
thermore, we must always consider the assumptions about the data that different statistical
methods imply, and how these translate to our setting.

We begin by considering our simple ‘threshold’ fairness measure based on mutual infor-
mation from Definition 9. Note that given a finite dataset, computing the empirical mutual
information as given in Definition 8 yields a biased estimator of the true value I(S;O) (the
bias of an estimator θ̂ of some real value θ is Eθ[θ̂ − θ]). It is actually known that for the
discrete case, no unbiased estimator exists for general distributions [51, Proposition 8]. How-
ever, even when they exist, unbiased estimators are not necessarily optimal with respect to
other loss functions such as the mean squared error, MSE(θ̂) = Eθ[(θ̂ − θ)2]. The empirical
estimation of entropy and mutual information is an extremely important topic in informa-
tion theory, and a variety of (biased) estimators improving upon the trivial estimator from
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Definition 8 are known [51, 41].
In any case, we have argued that threshold-based measures of fairness are insufficient, if

our goal is to assess whether an algorithm exhibits any kind of bias on a large scale. In such a
case, statistical hypothesis testing methods effectively allow us to compute the probability (in
the form of a p-value) that an unbiased algorithm would have produced results as extreme as
the ones we have observed. This probability can be computed directly, using a so-called exact
test such as Fisher’s exact test or a permutation test [49, 69, 14]. However, these tests become
computationally expensive for large datasets. Approximate tests such as Pearson’s chi-squared
test or the G-test have the advantage of being efficiently computable, while also yielding good
approximations of the exact p-values, for large datasets. Because these approximations tend to
underestimate the true p-values, thus leading to a higher rejection rate of the null-hypothesis,
certain heuristic corrections can be applied, especially for small datasets. The most common
methods are Yates’ correction for continuity and Williams’ correction [65, 47]. In his popular
‘Handbook of Biological Statistics’ [47], McDonald recommends exact tests for datasets of
size up to 1000, and G-tests or chi-squared tests for significantly larger datasets.

5.3.2 Independence Assumptions

A crucial assumption required for hypothesis tests such as the G-test, chi-squared test, or
Fisher’s exact test, is that, under the null-hypothesis, the data samples (s, o) are independent
samples distributed as P (S,O). In contrast, permutation tests are based on the strictly weaker
assumption of exchangeability, meaning that any permutation of the data should be equally
likely, if the null-hypothesis holds. As noted by Tschantz et al. [69, 14], permutation tests may
be preferable in contexts such as ad targeting, where the assumption of independence can be
unreasonable. For large datasets however, permutation tests are prohibitively expensive, in
which case approximate permutation tests, also called Monte Carlo tests, can be used. These
tests consider a fixed number of randomly chosen permutations and yield an estimated p-value
p̂ along with a confidence interval for the true p-value. In this work, we have assumed that
the assumption of independence of our data samples holds, and we will therefore not go into
more detail about such tests.

5.3.3 Multiple Hypothesis Testing

Tschantz et al. [69, 14] also noted that many recent works on algorithmic fairness, that rely on
statistical testing methods, fail to account and correct for multiple hypothesis testing. When
considering subset discrimination as in Section 5.2, we are potentially interested in computing
multiple hypothesis tests simultaneously, to uncover discriminatory biases in various subsets of
the user population. As the number of tested hypotheses increases, so does the probability of
obtaining a low p-value strictly by chance. Suppose we test a single hypothesis H, and reject it
if the p-value falls below some threshold, say 0.05. Then the probability of incorrectly rejecting
H (a false-positive or Type I error) is 5%. If instead we test m hypotheses H1, H2, . . . ,Hm,
the probability that any of the hypotheses is falsely rejected is much larger (up to 5m%
if the tested hypotheses are not independent). In our case, a false-positive corresponds to
mistakenly classifying a fair algorithm as unfair for some subset of the users. Because of the
possibly far-reaching consequences of such an error, we should aim to limit their probability
of appearance to some small value, regardless of the number of tested hypotheses.
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Many statistical methods exist, that adjust p-values to account for multiple hypothe-
sis testing. A common technique consists in controlling the so-called familywise error rate
(FWER), by guaranteeing that the probability of any false-positive, over all tested hypothe-
ses, falls below some pre-defined threshold (e.g. 0.05). The Šidák-correction (for independent
tests only) as well as the Bonferroni and Holm-Bonferroni corrections [64, 34, 61, 3] are the
simplest examples of such methods. Although they provide very strong bounds on the false-
positive rate, these techniques are sometimes considered to be overly conservative, and to
have limited statistical power to detect any significant biases, especially when the number of
tested hypotheses is large. A less conservative approach is to consider the false discovery rate
(FDR) rather than the FWER, which is defined as the expected number of false-positives
over all rejected hypotheses. Bounding the FDR at 0.05 means that at most 5% of the re-
jected hypotheses are expected to be wrongly rejected. The Benjamini-Yekutieli procedure is
a common method used to adjust p-values in order to control the FDR, for both independent
or dependent families of hypotheses [8]. We note that adjustments for multiple hypothesis
testing should also be applied when computing confidence intervals [61], a problem which was
not addressed in the works of Ruggieri et al. [60, 58] and Luong et al. [44].
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6 Evaluation

In this Section, we present an evaluation of a prototype of the system we described in Sec-
tion 5. We focus on three different datasets, described hereafter. The source code and data
we used can be obtained from the following Git repository: https://git.epfl.ch/repo/

algo-fairness.git.

Dataset 1: Toy Credit Allocation The first dataset we use is an artificial toy dataset,
extending the example from Table 8, illustrating Simpson’s paradox. The data represents
credit allocations to users (either male or female) for a particular purchase (a car, a house or
a trip).

Purpose
Male Female

Applicants Credit Applicants Credit

Buy Car 2,000 75% 1,000 50%
Buy House 2,000 25% 3,000 50%
Buy Trip 2,000 50% 2,000 50%

All 3,000 50% 6,000 50%

Table 9: Toy dataset of credit allocations.

Removing the sensitive attribute (gender), this dataset contains 3 clusters corresponding
to the different types of user purchases. In the dataset as a whole, as well as in the cluster of
users willing to buy a trip, gender and credit allocation are independent. For users wishing
to buy a car or a house, the credit allocation algorithm is biased respectively against females
and against males.

Dataset 2: Berkeley Admissions Our second dataset consists of the admission figures
for the six largest departments at UC Berkeley in the fall of 1973 [9, 23]. This is a classical
example of Simpson’s paradox, where the supposed gender-bias observed over the whole
dataset disappears (or is even reversed) in each subset of the data.

Department
Male Female

Applicants Admitted Applicants Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

All 2,590 46% 1,835 30%

Table 10: Berkeley admissions data for the fall of 1973 [9, 23].

This dataset is interesting to us for multiple reasons. It is an illustration of a potential case
of business-necessity, as most of the observed discrimination can be ‘explained’ by clustering
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users into the respective departments they applied to. In the departments themselves, we
can also differentiate between apparent biases that are statistically significant or not. At a
standard significance level of 0.05, only the bias in department A (which is actually in favor
of women) is significant enough, for the hypothesis of fairness to be rejected.

Dataset 3: US Adult Census The last dataset that we use is the famous US census
data 8, for predicting whether an individual earns over $50,000 a year. The dataset consists
of 48,842 instances, represented by 14 features (6 continuous, 8 categorical) in addition to the
target feature. The sensitive feature we will consider is gender. In the complete dataset, a
significant bias against women appears.

Male Female
Applicants > 50K Applicants > 50K

32,650 30.38% 16,192 10.93%

Table 11: Gender bias in the complete Adult dataset.

We will be interested in analyzing clusters representing different sub-populations of the
users, and find out whether the observed bias can be explained by some of the available
features, or if it appears to be inherently present. We note that this data does not correspond
to an actual algorithmic decision making process, but is nevertheless interesting to consider
because of its thorough usage and analysis in the literature.

6.1 System Setup and Requirements

We built a prototype of our system in Python (version 2.7.6). All experiments were run
using the IPython kernel [55] (version 2.3.1), making use of the standard data processing and
machine learning libraries detailed below.

Library Version Purpose

numpy 1.9.0rc1 Multidimensional data processing [72].
pandas 0.16.1 Multidimensional data processing [48].
pydot 1.0.29 Graphical output of decision trees.
scikit-learn 0.16.1 Machine learning routines [52].
scipy 0.13.0b1 Statistical tests [35, 72].
statsmodels 0.6.1 Multiple hypothesis testing.

6.2 Methods

For the three datasets, we apply the generic pipeline for the robust statistical detection of
subset-discrimination, as described in Section 6. Since we are performing statistical hypothesis
tests on the testing set, we should make sure that the size of the test set is sufficient to
guarantee meaningful statistical results. Compared to a traditional classification task, we
will thus aim to learn our model on a rather small training set (yet sufficiently large to find

8https://archive.ics.uci.edu/ml/datasets/Adult
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meaningful clusters), and keep most of the data for the hypothesis testing phase. In our
experiments, we split our data into a training and test set using a random (14 , 3

4) split.

We train a decision-tree classifier on the training set, specifying a maximal tree height
and a minimal leaf size. This is both to guard against over-fitting and to maintain the
meaningfulness of our statistical tests. To assess the performance of our decision tree, we also
train a baseline logistic-regression classifier. We report the accuracy of both classifiers on the
test set. For the test set as a whole, as well as for each cluster unveiled by the decision tree,
we perform a G-test of independence and compute the corresponding p-value. We correct for
multiple hypothesis testing using the robust, yet-conservative, Holm-Bonferroni method, for
a family-wise error rate of 5%.

Algorithms We use the DecisionTreeClassifier class from the sklearn.tree module
in scikit-learn. The underlying algorithm used is an optimized version of CART [10], which
constructs a binary tree by recursively selecting the splitting feature that yields the largest
information gain for classification. We fix the decision tree’s maximal height (or depth) to
either 4 or 5, and the minimal leaf size to 100, guaranteeing that the discovered clusters
(on the training set) contain at least 100 individuals and can be described using at most 4
to 5 non-sensitive features and thresholds. As a baseline, we use the LogisticRegression

classifier from scikit-learn’s sklearn.linear model module.

Data Pre-Processing For each dataset, we use one-hot-encoding to transform categorical
features into a set of binary features. A nice property of decision-tree classifiers is that they can
directly handle both discrete and continuous numerical features with different ranges, without
any normalization, and therefore do not necessarily require any additional pre-processing. For
the logistic regression classifier, we first apply a standard normalization to our data to obtain
centered features with unit variance. We also remove the sensitive features from the training
set before learning our classifiers, since by definition we do not want to consider a clustering
of users based on these values.

6.3 Results

The decision trees produced by our classifiers can be visualized using the Graphviz package 9,
and we display them in Figures 3-5. Internal nodes contain a decision rule, which is simply a
predicate involving a feature and a chosen threshold. The left sub-tree of a node corresponds
to the subset of data samples for which the predicate is true. All nodes further contain the
total number of samples rooted at that node, as well as the entropy of the distribution of
target values. Each leaf displays the frequencies of the target values in the corresponding
user-cluster.

Toy Credit Dataset The decision-tree learned on the training set is displayed in Figure 3.
The tree classifier is easily seen to be optimal, given that only one feature is available. It
achieves the same accuracy of 58.18%, on the test set, as the baseline logistic regression
classifier. The results of the hypothesis testing phase on the test set are displayed in Table 12.

9http://www.graphviz.org/

47

http://www.graphviz.org/


As expected, no significant bias is uncovered when considering the whole dataset, or those
users willing to buy a trip. In the two remaining clusters however, a clear discrimination
emerges, once in favor of men and once in favor of women.

Purpose_Buy-Car <= 0.5000
entropy = 0.999945818108

samples = 3000

Purpose_Buy-House <= 0.5000
entropy = 0.988990218792

samples = 2245

entropy = 0.9187
samples = 755

value = [ 252.  503.]

entropy = 0.9996
samples = 965

value = [ 494.  471.]

entropy = 0.9714
samples = 1280

value = [ 767.  513.]

Figure 3: Decision-tree classifier trained on the toy credit dataset.

Purpose
Buy-Car Buy-House Buy-Trip p-value adj. p-value

ROOT - - - 0.75 1.00
LEAF 1 - - 3 0.68 1.00
LEAF 2 - 3 - 1.33 · 10−56 5.30 · 10−56

LEAF 3 3 - - 5.64 · 10−32 1.69 · 10−31

Male Female
Applicants Credit Applicants Credit

LEAF 2 1,479 24.54% 2,241 50.16%
LEAF 3 1,501 75.02% 744 49.87%

Table 12: Hypothesis testing on the full test-set, as well as on the discovered clusters for the
toy credit dataset. We report the individual p-values from the G-test, as well as the adjusted
p-values after applying the Holm-Bonferroni correction. For those data subsets exhibiting a
bias significant at a level of 5% (displayed in bold), we further provide a detailed view showing
the direction of the bias.

Berkeley Dataset We display the decision tree from the Berkeley admissions data in Fig-
ure 4. As for the toy credit dataset, the decision-tree classifier is trivially optimal, achieving
the same accuracy of 69.78% as the baseline logistic regression. The results of the hypothesis
testing phase on the test set are displayed in Table 13. We obtain a clear representation of
Simpson’s paradox, with the overall bias disappearing, or being reversed (in department A),
when considering subsets of the population.
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Department_A <= 0.5000
entropy = 0.964600876812

samples = 1106

Department_F <= 0.5000
entropy = 0.890283453942

samples = 865

entropy = 0.8993
samples = 241

value = [  76.  165.]

Department_B <= 0.5000
entropy = 0.944825313714

samples = 706

entropy = 0.3388
samples = 159

value = [ 149.   10.]

Department_E <= 0.5000
entropy = 0.895788618517

samples = 570

entropy = 0.9843
samples = 136

value = [ 58.  78.]

Department_C <= 0.5000
entropy = 0.925038519313

samples = 435

entropy = 0.7642
samples = 135

value = [ 105.   30.]

entropy = 0.9321
samples = 207

value = [ 135.   72.]

entropy = 0.9183
samples = 228

value = [ 152.   76.]

Figure 4: Decision-tree classifier trained on the Berkeley admissions dataset.

Department
A B C D E F p-value adj. p-value

ROOT - - - - - - 9.23 · 10−19 6.46 · 10−18

LEAF 1 - - - 3 - - 0.22 1.00
LEAF 2 - - 3 - - - 0.30 1.00
LEAF 3 - - - - 3 - 0.66 1.00
LEAF 4 - 3 - - - - 0.43 1.00
LEAF 5 - - - - - 3 0.52 1.00
LEAF 6 3 - - - - - 8.40 · 10−05 5.04 · 10−04

Male Female
Applicants Admitted Applicants Admitted

ROOT 1,944 45.99% 1,375 30.84%
LEAF 6 617 60.62% 75 82.67%

Table 13: Hypothesis testing on the full test-set, as well as on the discovered clusters for the
Berkeley admissions dataset.
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Adult Dataset Finally, we train a decision tree on the adult census data and display it
in Figure 5. We limit the tree depth to 4, to avoid an explosion in the number of leaves,
for no significant gain in accuracy. The decision tree has an accuracy of 84.39% on the test
set, slightly less than the 84.91% of the logistic regression classifier. The hypothesis testing
phase results appear in Table 14. The features Age, Capital Gain, Capital Loss and Hours
per week are continuous and self-explanatory. Education-Num is an integer between 1 and 16,
representing a user’s education level. Finally, Married-civ-spouse is a binary feature indicating
whether a user is married or not.

Features
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p-value adj. p-value

ROOT - - - - - - - - - 0.00 0.00
LEAF 1 - - - 7 - 7 - 7 7 2.46 · 10−05 2.46 · 10−04

LEAF 2 - - - 7 - 7 - 3 7 0.04 0.28
LEAF 3 7 - - 7 - 3 - - 7 0.72 1.00
LEAF 4 3 - - 7 - 3 - - 7 9.09 · 10−10 1.00 · 10−08

LEAF 5 - - - 3 - - - - 7 4.58 · 10−03 0.04
LEAF 6 - - 7 - - 7 7 - 3 0.16 1.00
LEAF 7 - - 7 - - 7 3 - 3 0.58 1.00
LEAF 8 - - 7 - 7 3 - - 3 0.47 1.00
LEAF 9 - - 7 - 3 3 - - 3 0.14 1.00
LEAF 10 - 7 3 - - - - - 3 0.48 1.00
LEAF 11 - 3 3 - - - - - 3 0.44 1.00

Male Female
Applicants Credit Applicants Credit

ROOT 24,535 30.17% 12,097 10.99%
LEAF 1 5,904 2.17% 7,199 1.22%
LEAF 4 1,308 24.85% 1,461 15.54%
LEAF 5 218 98.17% 134 91.79%

Table 14: Hypothesis testing on the full test-set, as well as on the discovered clusters for the
Adult Census dataset.
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Figure 5: Decision-tree classifier trained on the Adult Census dataset.
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6.4 Analysis

The credit dataset (Table 9) and Berkeley datasets (Table 10) were used because they provide
clear illustrations of Simpson’s paradox. As we have seen, decision-tree classifiers yield a clear
characterization of the different user sub-populations for these simple examples. For the toy
credit dataset, as expected, the cluster analysis and hypothesis testing phase uncovers ex-
tremely significant biases in the sub-clusters corresponding to users willing to purchase either
a car or a house. For the Berkeley admissions data, the discovered clusters trivially corre-
spond to the different departments, of which only the first exhibits a statistically significant
bias, albeit in favor of women. Leaving department A aside, our results show that clustering
users based on the department they apply to can be seen as potential business requirement,
which justifies the bias observed over the university as a whole.

Formally, we can compute the conditional fairness of the admission process, as described
in Section 3.2. The mapping h trivially classifies applicants based on the department they
applied to (we have B = K = {A,B,C,D,E, F}). The G-test of conditional independence,
evaluated on the full test-set, yields a p-value of 0.0037. Thus, we see that when conditioning
on the department, the statistical significance of the gender-bias remains significant, but is
greatly reduced, when compared to the p-value of 9.23 · 10−19 obtained for the the hypothesis
of unconditional independence on the full test-set.

Our results on the Adult Census dataset demonstrate the scalability of our approach, both
in terms of the dataset size and in the number of features. An analysis of the features selected
in the decision tree training process sheds light on some potential explanations for the observed
gender bias. Intuitively, one would expect attributes such as Age, Capital Gain, Capital
Loss, Education-Num and Hours per week to be strongly correlated to a user’s income level,
regardless of gender. If all of the observed gender bias could be explained using only these
features, we would have potentially uncovered a set of explanatory features. The remaining
feature, Married-civ-spouse, which indicates whether a user is married or not, seems less
intuitive. First of all, our decision tree discovered that it is the feature with the highest
explanatory power towards a user’s income level. Over the full dataset, 44.61% of the 22,379
married users have an income higher than 50K, against only 6.44% of the 26,463 unmarried
users. A further striking observation, from Table 14, is that the gender bias essentially
disappears when considering only married users. We believe that a simple, and somewhat
perverse, explanation of this social phenomenon, lies in the fact that a married user’s income
would consist of the household income. Thus, on the one hand, married users would be more
likely to have high income, because they often combine two incomes. On the other hand, men
and women would trivially appear to be equally likely to have a high household income, even
if on average married women possibly still earn less than married men.

As the available data doesn’t allow us to confirm or infirm this supposition, we now
shift our focus to unmarried users, for which a clear gender-bias persists. Out of the decision
tree’s clusters, three exhibit a statistically significant gender bias, after correction for multiple
hypothesis testing. For instance, we can conclude that for unmarried users with high capital
gain (over 7,055), men remain significantly more likely to have high income than women. The
same observation can be made for unmarried users with low capital gain, education number
and hours of work per week (LEAF 1), or unmarried users older than 27, with high education
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number but low capital gain. In contrast, very young users (LEAF 3) seem to globally have
similarly low incomes, regardless of gender.

Although the bias considered here is not induced by algorithmic decision making, but
rather a striking example of social discrimination, the discrimination-discovery pipeline we
introduced in Section 5 remains highly relevant. The use of decision-tree clustering techniques
has enabled us to uncover various subsets of the data, in which vastly different discriminatory
biases occur. As illustrated by our discussion on the influence of a user’s martial status in
the Adult dataset, or of an applicant’s department in the Berkeley dataset, understanding
whether an explanatory attribute should be considered as demonstrative of a valid business
necessity remains a difficult question, governed by contextual policy.

6.5 Possible Limitations and Extensions

Learning a Xor with a Tree As we mentioned in Section 5.2, our approach to subset-
discrimination, based on decision-tree classification, trades the exhaustiveness of the discrim-
ination discovery, for the interpretability of the discovered subsets, as well as the meaningful-
ness of the multiple statistical test we perform. As a result of the decision tree construction,
we might fail to find discriminatory biases in data niches that provide low explanatory power
about the output feature. Consider the following situation for instance.

Purpose
Male Female

Applicants Credit Applicants Credit

Buy Car 1,000 75% 1,000 25%
Buy House 1,000 25% 1,000 75%

All 2,000 50% 2,000 50%

Table 15: Illustration of issues with feature selection for decision trees.

To select which split to apply to a node, standard decision-tree classifiers consider the
information-gain, that each feature provides about the output variable. In the above example,
the original entropy of the output is 1 bit, and no-single feature provides any information gain.
Such ‘XOR’-like scenarios are known to be difficult to learn using decision tree classifiers,
which might be a limitation of our approach. However, it is unclear to us whether such
‘worst-case’ situations, where different subsets exhibit completely opposite discriminatory
biases, should be expected to arise in the analysis of discriminatory practices.

Constraining the Tree Structure: Over-Fitting and Interpretability Another as-
pect of our model, that merits discussion, is the choice of constraints that we impose on the
decision-tree structure, in order to protect against over-fitting while simultaneously guaran-
teeing interpretability for the clusters. Simply bounding the tree depth, as in Section 6, is
probably not always the best possible approach. For instance, for datasets such as the Berke-
ley admissions, with a highly explanatory categorical feature, the resulting tree is degenerate,
with one leaf per value taken by this feature. When such a categorical feature takes a large
number of values (suppose we considered the 20 largest departments at UC Berkeley), the
optimal tree has high depth, but each leaf is still defined in terms of a single feature. A
simple solution would be to consider more general trees than the binary trees implemented
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in the scikit-learn library, by allowing multi-way splits on categorical features. Alternatively,
we could also consider bounding the number of leaves of the decision-tree, rather than its
depth. The most optimal approach would be to design a specific node-splitting criterion or
pruning strategy for a generic decision-tree classifier, taking into account the interpretability
of the tree nodes (the number of different features required to define the leaf clusters) as well
as the leaf-cluster size (to guarantee statistically meaningful results).

Feature Selection and Small Conjunctive Formulas Finally, we note that a decision-
tree classifier can be seen as an implicit method for feature selection. Indeed, most decision
tree algorithms proceed by recursively looking for the best possible feature to split on (based
on some specific performance measure). We could consider the following, different but con-
ceptually similar, method for uncovering user sub-populations, relying on a generic feature-
selection procedure. For simplicity, assume all features are binary and that we select k features
{f1, f2, . . . , fk}. Then, potentially significant user-subsets can be formed by considering all
possible conjunctive formulas over these features. For instance, if the relevant features are
Age ∈ {young, old}, Capital ∈ {low, high} and Education ∈ {low, high}, we would consider
the 8 user sub-sets of the form {Age = x ∧ Capital = y ∧ Education = z}. These clusters can
actually be viewed as the leaves of a decision tree, that splits the dataset based on one of
the relevant features at each stage. By appropriately bounding the number of selected fea-
tures k, we obtain clusters that are interpretable in terms of at most k features, and we limit
the number of tested hypotheses to 2k. A similar approach was recently introduced in the
context of discrimination discovery in ad targeting [26], with sparse linear regression being
used as a feature selection procedure. Feature selection is an extremely important topic in
machine learning, and a variety of alternative techniques are known [29], which could also be
considered.
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7 Conclusion and Future Work

Results and Contributions In this Thesis, we have revisited the problem of discrimina-
tion discovery in algorithmic decision making, and proposed a statistically-robust framework,
along with new metrics and approaches, for reasoning about algorithmic fairness.

We first presented an overview of previously considered ‘threshold’-measures of an algo-
rithm’s bias, highlighting their inherent limitations, such as their non-applicability to mul-
tivalued features or decision processes, as well as their failure to encompass various notions
of utility. We introduced a more general and scalable fairness measure based on mutual in-
formation, that had received little attention so far, and showed that it produced much more
coherent results than the statistical parity measure proposed by Dwork et al. [17, 73], when
applied to empirical data.

We further illustrated the awkwardness of all the considered threshold-based fairness mea-
sures, in their inability to detect small algorithmic biases applied on a large scale. We argued
that the a-protection approach of Ruggieri et al. [60, 58], wherein an algorithm is considered
unfair whenever there is strong evidence that its bias lies above some fixed threshold, is not
in accordance with certain legal guidelines, such as those of the EEOC in the US. We intro-
duced a generic measure of fairness based on statistical hypothesis testing, that albeit being a
standard tool in legal practices, had not yet been considered in works on algorithmic fairness
in the data mining and machine learning communities. In this context, we also presented an-
other advantage of mutual information over other previously considered measures of fairness,
in that it is directly related to a popular statistical goodness-of-fit test, known as the G-test.

We further discussed possible generalizations of our statistical framework, in order to
account for situations where complete independence between sensitive features and an algo-
rithm’s outputs might be unacceptably at odds with the utility derived by the algorithm’s
vendor or its users. We first introduced a straightforward distinction between an algorithm’s
output and the utility that a user may derive from it, which, despite its simplicity, has not
been mentioned in any of the related literature. We further considered discriminatory biases,
that are deemed as genuinely necessary in the context of the algorithm’s classification task.
We proposed a notion of conditional fairness, wherein an algorithm’s bias is measured only
with respect to classes of users regarded as equally qualified by the algorithm’s vendor. Such
a user clustering can be seen as a particular instance of a task-specific user-similarity metric,
introduced by Dwork et al. in their framework [17]. Our method closely mimics legal prac-
tices, in that it may leave the task to the algorithm’s vendor, of providing a reasonable and
comprehensible explanation of the business requirements that lead to a perceived bias, the
validity of which must be assessed by policy.

In a second part of this work, we focused on practical aspects related to the design of a
statistically-robust methodology for the discovery of discriminatory patterns in data. We first
discussed various issues relating to the collection and representation of data, including aggre-
gate statistics obtained from external sources and knowledge. In a second step, we considered
the important problem of discovering discriminatory biases, that only appear in particular
subsets of the user-space, forming so-called contexts of discrimination [60, 58]. We proposed a
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generic data processing pipeline, relying on cluster analysis techniques, to learn a simple and
interpretable model of the underlying classifier, as well as the main user sub-populations with
regard to a specific task. We argued that by forming simple and interpretable representations
of these user clusters, we could hope to discover both specific discrimination contexts, as well
as potential explanatory features for an algorithm’s bias. Throughout the design of our sys-
tem, we encountered various statistical and logical pitfalls, related to Simpson’s paradox and
the multiple comparisons problem, and proposed robust statistical methodologies to overcome
these fallacies.

We presented a simple instantiation of our data pipeline, making use of decision-tree
classifiers to obtain simple and easily comprehensible interpretations of the main user sub-
populations in a dataset. We ran various experiments of our solution, on a toy credit-allocation
dataset, the Berkeley graduate admissions data as well as the US Census dataset. For the toy
dataset, we illustrated how clustering techniques may unveil significant discriminatory prac-
tices arising in particular data niches, but hidden in the complete dataset. In the Berkeley
dataset, we considered an alternative example of Simpson’s paradox, where a perceived bias
is explained away, or even reversed, when the data is partitioned into meaningful subsets. Fi-
nally, on the Census dataset, we demonstrated the robustness and scalability of our approach,
in unveiling sub-populations with a simple and readable interpretation, which exhibit a sta-
tistically significant gender-bias. Our analysis further revealed that features such as a users
martial status, or capital, may provide partial explanations about the exhibited gender-bias,
although they do not account for the discrimination as a whole.

Perspectives, Open Problems and Future Work A logical next step will be to continue
the evaluation of our system on various alternative datasets with interesting characteristics,
such as multivalued sensitive features or algorithmic outputs, or considerations about the
user’s utility. We plan on building a multipurpose system, capable of uncovering discrim-
inatory practices in a large variety of use-cases, including utility constraints and potential
external knowledge sources. From a technical perspective, our solution should propose a
variety of methods for cluster analysis, generation of interpretable hypotheses, and robust
statistical testing.

Getting a better understanding of the concept of individual fairness, introduced by Dwork
et al. [17], appears to be an important open problem. As we briefly discussed, the current
definition, that relies on a generic notion of user-similarity as well as on a notion of closeness in
outcome probabilities, still seems to suffer from some important limitations. It is for instance
unclear, how user-utility measures would fit into this framework, or whether probabilities of
outcomes are the right ‘resource’, over which equity should be guaranteed.

Finally, an extremely important aspect of the algorithmic fairness question that this work
has not touched upon, is that of discrimination prevention. So far, research in this area has
focused on building specific types of classifiers, that attain high accuracy while maintaining
low bias, when trained on potentially biased data. Most of the proposed techniques rely on
fairness measures limited to binary features and algorithmic outcomes, and do not take into
account any form of user or business utility. Incorporating utility notions, especially business
requirements that justify some algorithmic bias, into discrimination prevention is a critical
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open problem in this field. We believe that the approaches and measures introduced in this
work can provide foundations for the development of mechanisms achieving this goal.

In this context, a question which seems to have received little attention so far is that
of choosing appropriate metrics, for quantifying the performance of a ‘fair’ classifier. While
the vast majority of the machine learning literature has focused primarily on optimizing
the predictive accuracy of classifiers, the notions of comprehensibility and interpretability of
classification models have recently re-surfaced, most prominently in tasks related to person-
alized medicine [43] or credit scoring [46], with regard to concerns on trust, accountability
and justifiability in algorithmic decision-making [24]. Following our own discussions on the
comprehensibility of various discrimination contexts, as well as on the justifiability of genuine
business requirements that explain an algorithmic bias, we believe that the interpretability of
a classification model is an important aspect to consider, in order to limit the discriminatory
potential of algorithmic decision making on a big-data scale.
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Appendix

A Discrimination Law Background

To introduce legal approaches for discrimination protection, we focus on the ‘European non-
discrimination law’ [2], in use in European Union, and on Title VII of the American Civil
Rights Acts of 1962 [1] and 1991, on discrimination in employment.

Discrimination law in the EU is not defined with a particular context in mind. Its aim
is to ‘allow all individuals an equal and fair prospect to access opportunities available in
a society’ [2]. The law introduces protected grounds, upon which discrimination should be
prohibited, namely ‘sex, sexual orientation, disability, age, race, ethnic origin, national origin
and religion’ [2]. In contrast, Title VII focuses exclusively on discrimination in employment,
based on ‘race, color, religion, sex and national origin’ [1]. Additional acts, broadening the
scope of anti-discrimination legislation, include the Civil Rights Act of 1968 on discrimination
in housing, the Age Discrimination Act and the Americans with Disabilities Act of 1990.

Both the European and American laws similarly distinguish between two theories of dis-
crimination. The EU law defines Direct Discrimination and Indirect Discrimination, which
are roughly analogous to the theories of Disparate Treatment and Disparate Impact under
Title VII.

Direct Discrimination and Disparate Treatment Direct discrimination or disparate
treatment refer to the situation where an individual is treated unfavorably, compared to
other individuals in a similar situation, on the basis of a protected attribute. A key property
of direct discrimination and disparate impact is the intent to discriminate, implying that
there should be a causal link between the treatment and the protected attribute. A case
of intentional discrimination towards an individual will usually be made by comparing the
individual’s treatment to that of another individual in a similar situation, where the main
difference between the two is a protected attribute.

Indirect Discrimination and Disparate Impact In contrast, indirect discrimination or
disparate impact refer to situations, where a facially ‘neutral rule, criterion or practice’ [2],
has a discriminatory effect or impact on members of a protected group, compared to other
groups in a similar situation. In such a case, it is thus not necessary to prove an intent
to discriminate, but rather, provide evidence that the members of a protected group are
disproportionately affected by some practice.

The European law advocates the use of ‘statistical evidence’ for establishing indirect
discrimination, but no ‘strict threshold requirement’ is provided [2]. In the US, the ‘Uniform
Guidelines on Employee Selection Procedures’ introduce the so-called four-fifths rule as a
guideline for the enforcement of Title VII. The rule states that a ratio in selection rates of
less than 4

5 (or more than 5
4) between two protected groups will generally be regarded as

evidence of disparate impact. However, it is emphasized that this threshold is not absolute,
and that the statistical significance of the adverse impact should also be evaluated [13, 6].

Business Defense Both the European and American discrimination laws accept that a
differential treatment may be justified, if it pursues a legitimate and necessary business aim.
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In the EU, this general defense strategy is limited to indirect discrimination, whenever the
‘provision, criterion or practice is objectively justified by a legitimate aim, and the means of
achieving that aim are appropriate and necessary’ [2]. For the particular case of discrimi-
nation in employment, discrimination based on a characteristic related to protected features
is justified, if the ‘characteristic constitutes a genuine and determining occupational require-
ment’ [2]. Similarly, under Title VII, an employer may justify disparate impact, by showing
that the discriminatory practice is due to legitimate requirements for a particular job [28].
This is commonly called the business-necessity defense.

Interpretation in Previous Work The work of Ruggieri et al. [60, 58] has distinguished
between direct and indirect discrimination, depending on whether sensitive features S were
part of the collected data. They refer to direct discrimination, when a direct dependency
between S and O can be established, and to indirect discrimination, when additional external
knowledge about S has to be used to estimate this dependency. We note that this approach
fails to take into account the notion of causality or intent, that is essential in the legal
definitions of direct discrimination and disparate treatment. Dwork et al. [17, 73] propose
to distinguish between individual-fairness, asking that two similar individuals be treated
similarly, and group-fairness, asking that two protected groups be treated similarly on average.
This approach also does not consider the distinction between intentional and unintentional
discrimination. A popular method for detecting causal effects between two features is a
randomized experiment. This is used for instance in [14], to detect direct discrimination in
ad-targeting.

Previous works have also considered various interpretations of the notion of ‘similar sit-
uation’, appearing in EU and American laws. Ruggieri et al. [60, 58] use frequent itemset
mining to discover discrimination contexts, in which a significant algorithmic bias is exhib-
ited. Luong et al. [44] propose to measure discrimination in small subsets of similar users,
where similarity is defined using a k-NN clustering. Finally, Dwork et al. [17, 73] propose a
definition of individual fairness based upon on an arbitrary user similarity metric.

Interpretation in This Work In this Thesis, we consider algorithmic discrimination as
a case of indirect discrimination. Indeed, we may fairly assume that the algorithm’s design
goal is not to actively and intentionally discriminate, but rather that its application may lead
to a differential effect on certain protected groups. We thus focus on detecting dependencies
between sensitive features and algorithmic outputs, and make no conclusions regarding the
causality of these effects. In accordance with legal practices, we make use of statistical tests
to discover algorithmic biases, both in terms of significant differences in outcome proportions,
as well as in significant absolute differences. Compared to previous works, we also interpret
the notion of differential effect in a more broader sense, to include situations where users are
treated similarly but perceive different utilities from algorithmic decisions.

In order to evaluate an algorithm’s bias over groups of similar users, we first learn a simple
and interpretable model of the algorithm’s decision-process, and then cluster users based on
important non-sensitive features, with respect to the classification task at hand.
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