
Formal Abstractions for Attested Execution
Secure Processors

Abstract. Realistic secure processors, including those built for aca-
demic and commercial purposes, commonly realize an “attested execu-
tion” abstraction. Despite being the de facto standard for modern secure
processors, the “attested execution” abstraction has not received ade-
quate formal treatment. We provide formal abstractions for “attested
execution” secure processors and rigorously explore its expressive power.
Our explorations show both the expected and the surprising.
On one hand, we show that just like the common belief, attested exe-
cution is extremely powerful, and allows one to realize powerful crypto-
graphic abstractions such as stateful obfuscation whose existence is oth-
erwise impossible even when assuming virtual blackbox obfuscation and
stateless hardware tokens. On the other hand, we show that surprisingly,
realizing composable two-party computation with attested execution pro-
cessors is not as straightforward as one might anticipate. Specifically, only
when both parties are equipped with a secure processor can we realize
composable two-party computation. If one of the parties does not have
a secure processor, we show that composable two-party computation is
impossible. In practice, however, it would be desirable to allow multiple
legacy clients (without secure processors) to leverage a server’s secure
processor to perform a multi-party computation task. We show how to
introduce minimal additional setup assumptions to enable this. Finally,
we show that fair multi-party computation for general functionalities is
impossible if secure processors do not have trusted clocks. When secure
processors have trusted clocks, we can realize fair two-party computa-
tion if both parties are equipped with a secure processor; but if only one
party has a secure processor (with a trusted clock), then fairness is still
impossible for general functionalities.

1 Introduction

The science of cybersecurity is founded atop one fundamental guiding principle,
that is, to minimize a system’s Trusted Computing Base (TCB) [76]. Since it
is notoriously difficult to have “perfect” software in practice especially in the
presence of legacy systems, the architecture community have advocated a new
paradigm to bootstrap a system’s security from trusted hardware (henceforth
also referred to as secure processors). Roughly speaking, secure processors aim
to reduce a sensitive application’s trusted computing base to only the processor
itself (possibly in conjunction with a minimal software TCB such as a secure
hypervisor). In particular, besides itself, a sensitive application (e.g., a banking

1

application) should not have to trust any other software stack (including the op-
erating system, drivers, and other applications) to maintain the confidentiality
and/or integrity of mission-critical data (e.g., passwords or credit card numbers).
Security is retained even if the software stack can be compromised (as long as the
sensitive application itself is intact). Besides a software adversary, some secure
processors make it a goal to defend against physical attackers as well. In par-
ticular, even if the adversary (e.g., a rogue employee of a cloud service provider
or a system administrator) has physical access to the computing platform and
may be able to snoop or tamper with memory or system buses, he should not
be able to harvest secret information or corrupt a program’s execution.

Trusted hardware is commonly believed to provide a very powerful abstrac-
tion for building secure systems. Potential applications are numerous, rang-
ing from cloud computing [13, 35, 58, 67, 68], mobile security [66], web secu-
rity, to cryptocurrencies [80]. In the past three decades, numerous secure pro-
cessors have been proposed and demonstrated by both academia and indus-
try [7, 28, 34, 39, 40, 56, 57, 59, 72, 79]; and several have been commercialized,
including the well-known Trusted Platform Modules (TPMs) [2], Arm’s Trust-
Zone [6, 8], and others. Notably, Intel’s recent release of its new x86 security
extensions called SGX [7, 33, 59] has stirred wide-spread interest to build new,
bullet-proof systems that leverage emerging trusted hardware offerings.

1.1 Attested Execution Secure Processors

Although there have been numerous proposals for the design of trusted hard-
ware, and these designs vary vastly in terms of architectural choices, instruction
sets, implementation details, cryptographic suites, as well as adversarial models
they promise to defend against — amazingly, it appears that somehow most
of these processors have converged on providing a common abstraction, hence-
forth referred to as the attested execution abstraction [2,7,34,59,73,75]. Roughly
speaking, an attested execution abstraction enables the following:

– A platform equipped with an attested execution processor can send a pro-
gram and inputs henceforth denoted (prog, inp) to its local secure processor.
The secure processor will execute the program over the inputs, and compute
outp := prog(inp). The secure processor will then sign the tuple (prog, outp)
with a secret signing key to obtain a digital signature σ — in practice, a
hash function is applied prior to the signing. Particularly, this signature σ is
commonly referred to as an “attestation”, and therefore this entire execution
is referred to as an “attested execution”.

– The execution of the aforementioned program is conducted in a sandboxed en-
vironment (henceforth referred to as an enclave), in the sense that a software
adversary and/or a physical adversary cannot tamper with the execution,
or inspect data that lives inside the enclave. This is important for realizing
privacy-preserving applications. For example, a remote client who knows the
secure processor’s public key can establish a secure channel with a secure
processor residing on a remote server S. The client can then send encrypted

2

and authenticated data (and/or program) to the secure processor — while
the messages are passed through the intermediary S, S cannot eavesdrop on
the contents, nor can it tamper with the communication.

– Finally, various secure processors make different concrete choices in terms
of how they realize such secure sandboxing mechanisms as mentioned above
— and the choices are closely related to the adversarial capabilities that the
secure processor seeks to protect against. For example, roughly speaking, In-
tel’s SGX technology [7, 59] defends against a restricted software adversary
that does not measure timing or other possible side channels, and does not
observe the page-swap behavior of the enclave application (e.g., the enclave
application uses small memory or is by design data-oblivious); it also defends
against a restricted physical attacker capable of tapping memory, but not ca-
pable of tapping the addresses on the memory bus or measuring side-channel
information such as timing and power consumption.
We refer the reader to Shi et al. [70] for a general-purpose introduction of
trusted hardware, and for a comprehensive comparison of the different choices
made by various secure processors.

The fact that the architecture community has converged on the “attested
execution” abstraction is intriguing. How exactly this has become the de facto
abstraction is beyond the scope of this paper, but it is helpful to observe that
the attested execution abstraction is cost-effective in practice in the following
senses:

– General-purpose: The attested execution abstraction supports the computa-
tion of general-purpose, user-defined programs inside the secure enclave, and
therefore can enable a broad range of applications;

– Reusability: It allows a single trusted hardware token to be reused by multi-
ple applications, and by everyone in the world — interestingly, it turns out
such reusability actually gives rise to many of the technicalities that will be
discussed later in the paper;

– Integrity and privacy: It offers both integrity and privacy guarantees. In par-
ticular, although the platform P that is equipped with the trusted hardware
serves an intermediary in every interaction with the trusted hardware, pri-
vacy guarantees can be bootstrapped by having remote users establish a
secure channel with the secure processor.

In the remainder of the paper, whenever we use the term “secure processors”
or “trusted hardware”, unless otherwise noted we specifically mean attested
execution secure processors.

1.2 Why Formal Abstractions for Secure Processors?

Although attested execution has been accepted by the community as a de facto
standard, to the best of our knowledge, no one has explored the following fun-
damental questions:

3

1. Precisely and formally, what is the attested execution abstraction?
2. What can attested execution express and and what can it not express?

If we can formally and precisely articulate the answers to these questions,
the benefits can be wide-spread. It can help both the producer as well as the
consumer of trusted hardware, in at least the following ways:

– Understand whether variations in abstraction lead to differences in expressive
power. First, various secure processors may provide similar but subtly differ-
ent abstractions — do these differences matter to the expressive power of the
trusted hardware? If we wish to add a specific feature to a secure processor
(say, timing), will this feature increase its expressive power?

– Enable formally correct use of trusted hardware. Numerous works have
demonstrated how to use trusted hardware to build a variety of secure
systems [13, 14, 29, 35, 58, 62, 65, 67–69]. Unfortunately, since it is not even
clear what precise abstraction the trusted hardware offers, the methodology
adopted by most existing works ranges from heuristic security to semi-formal
reasoning.
Moreover, most known secure processors expose cryptography-related in-
structions (e.g., involving hash chains or digital signatures [2, 7, 33, 59]), and
this confounds the programming of trusted hardware — in particular, the
programmer essentially has to design cryptographic protocols to make use
of trusted hardware. It is clear that user-friendly higher-level programming
abstractions that hide away the cryptographic details will be highly desir-
able, and may well be the key to the democratization of trusted hardware
programming (and in fact, to security engineering in general) — and yet
without precisely articulating the formal abstraction trusted hardware offers,
it would clearly be impossible to build formally correct higher-level program-
ming abstractions atop.

– Towards formally secure trusted hardware. Finally, understanding what is a
“good” abstraction for trusted hardware can provide useful feedback to the
designers and manufacturers of trusted hardware. The holy grail would be
to design and implement a formally secure processor. Understanding what
cryptography-level formal abstraction to realize is a necessary first step to-
wards this longer-term goal — but to realize this goal would obviously require
additional, complementary techniques and machinery, e.g., those developed
in the formal methods community [39, 63, 64, 79], that can potentially al-
low us to ensure that the actual secure processor implementation meets the
specification.

1.3 Summary of Our Contributions

To the best of our knowledge, we are the first to investigate cryptographically
sound and composable formal abstractions for realistic, attested execution secure
processors. Our findings demonstrate both the “expected” and the (perhaps)
“surprising”.

4

The expected and the surprising. On one hand, we show that attested ex-
ecution processors are indeed extremely powerful as one might have expected,
and allow us to realize primitives that otherwise would have been impossible
even when assuming stateless hardware tokens or virtual blackbox secure cryp-
tographic obfuscation.

On the other hand, our investigation unveils subtle technical details that
could have been easily overlooked absent an effort at formal modeling, and we
draw several conclusions that might have come off as surprising initially (but of
course, natural in hindsight). For example,

– We show that universally composable two-party computation is impossible
if a single party does not have such a secure processor (and the other party
does);

This was initially surprising to us, since we commonly think of an attested
execution processor as offering an “omnipotent” trusted third party that can
compute general-purpose, user-defined programs. When such a trusted third
party exists, it would appear that any function can be evaluated securely and
non-interactively, hiding both the program and data. One way to interpret our
findings is that such intuitions are technically imprecise and dangerous to pre-
sume — while attested execution processors indeed come close to offering such
a “trusted third party” ideal abstraction, there are aspects that are “imper-
fect” about this ideal abstraction that should not be overlooked, and a rigorous
approach is necessary towards formally correct usage of trusted hardware.

Additional results for multi-party computation. We additionally show the
following results:

– Universally composable two-party computation is indeed possible when both
parties are equipped with an attested execution processor. We give an ex-
plicit construction and show that there are several interesting technicalities
in its design and proof (which we shall comment on soon). Dealing with
these technicalities also demonstrates how a provably secure protocol candi-
date would differ in important details from the most natural protocol candi-
dates [49, 62, 68] practitioners would have adopted (which are not known to
have provable composable security). This confirms the importance of formal
modeling and provable security.

– Despite the infeasibility of multi-party computation when even a single party
does not have a secure processor, in practice it would nonetheless be desirable
to build multi-party applications where multiple clients (possibly without
secure processors) outsource data and computation to a single cloud server
equipped with a secure processor.
We show how to introduce minimal global setup assumptions — more specif-
ically, by adopting a global augmented common reference string [22] (hence-
forth denoted Gacrs) — to circumvent this impossibility. Although the theo-
retical feasibility of general UC-secure MPC is known with Gacrs even without
secure processors [22], existing constructions involve cryptographic compu-
tation that is (at least) linear in the runtime of the program to be securely

5

evaluated. By contrast, we are specifically interested in practical construc-
tions that involve only O(1) amount of cryptographic computations, and
instead perform all program-dependent computations inside the secure pro-
cessor (and not cryptographically).

Techniques. Several interesting technicalities arise in our constructions. First,
composition-style proofs typically require that a simulator intercepts and mod-
ifies communication to and from the adversary (and the environment), such
that the adversary cannot distinguish whether it is talking to the simulator or
the real-world honest parties and secure processors. Since the simulator does not
know honest parties’ inputs (beyond what is leaked by the computation output),
due to the indistinguishability, one can conclude that the adversary cannot have
knowledge of honest parties inputs either.

– Equivocation. Our simulator’s ability to perform such simulation is hampered
by the fact that the secure processors sign attestations for messages coming
out — since the simulator does not possess the secret signing key, it cannot
modify these messages and must directly forward them to the adversary. To
get around this issue would require new techniques for performing equivo-
cation, a technicality that arises in standard protocol composition proofs.
To achieve equivocation, we propose new techniques that place special back-
doors inside the enclave program. Such backdoors must be carefully crafted
such that they give the simulator more power without giving the real-world
adversary additional power. In this way, we get the best of both worlds: 1)
honest parties’ security will not be harmed in the real-world execution; and
2) the simulator in the proof can “program” the enclave application to sign
any output of its choice, provided that it can demonstrate the correct trap-
doors. This technique is repeatedly used in different forms in almost all of
our protocols.

– Extraction. Extraction is another technical issue that commonly arises in pro-
tocol composition proofs. The most interesting manifestation of this technical
issue is in our protocol that realizes multi-party computation in the presence
of a global common reference string (Gacrs) and a single secure processor (see
Section 7). Here again, we leverage the idea of planting special backdoors in
the enclave program to allow for such extraction. Specifically, when provided
with the correct identity key of a party, the enclave program will leak the
party’s inputs to the caller. Honest parties’ security cannot be harmed by this
backdoor, since no one ever learns honest parties’ identity keys in the real
world, not even the honest parties themselves. In the simulation, however,
the simulator learns the corrupt parties’ identity keys, and therefore it can
extract corrupt parties’ inputs.

Trusted clocks and fairness. Finally, we formally demonstrate how differences
in abstraction can lead to differences in expressive power. In particular, many
secure processors provide a trusted clock, and we explore the expressive power of
such a trusted clock in the context of fair 2-party computation. It is well-known

6

that in the standard setting fairness is impossible in 2-party computation for
general functionalities [32]. However, several recent works have shown that the
impossibility for general functionalities does not imply impossibility for every
functionality — interestingly, there exist a broad class of functionalities that
can be fairly computed in the plain setting [9, 46, 47]. We demonstrate several
interesting findings in the context of attested execution processors:

– First, even a single attested execution processor already allows us to compute
more functionalities fairly than in the plain setting. Specifically, we show that
fair two-party coin flipping, which is impossible in the plain setting, is possible
if only one party is equipped with an attested execution processor.

– Unfortunately, we show that a single attested execution processor is insuffi-
cient for fairly computing general 2-party functionalities;

– On the bright side, we prove that if both parties are equipped with an attested
execution processor, it is indeed possible to securely compute any function
fairly.

Additional results. Besides the trusted clock, we also explore variations in
abstraction and their implications — for example, we compare non-anonymous
attestation and anonymous attestation since various processors seem to make
different choices regarding this. We also explore an interesting model called
“transparent enclaves” [77], where secret data inside the enclave can leak to
the adversary due to possible side-channel attacks on known secure processors,
and we show how to realize interesting tasks such as UC-secure commitments
in this weaker model — here again our protocols must deal with interesting
technicalities related to extraction and equivocation.

1.4 Non-Goals and Frequently Asked Questions

Trusted hardware has been investigated by multiple communities from different
angles, ranging from how to architect secure processors [7, 28, 34, 39, 40, 56, 57,
59, 72, 79], how to apply them in applications [13, 14, 29, 35, 58, 62, 65, 67–69],
side-channels and other attacks [44,54,55,74,78,81] and protection against such
attacks [40, 57, 79, 81]. Despite the extensive literature, cryptographically sound
formal abstractions appear to be an important missing piece, and this work aims
to make an initial step forward towards this direction. In light of the extensive
literature, however, several natural but frequently asked questions arise regarding
the precise scope of this paper, and we address such questions below.

First, although we base our modeling upon what realistic secure processors
aim to provide, it is not our intention to claim that any existing secure proces-
sors provably realize our abstraction. We stress that to make any claim of this
nature (that a secure processor correctly realizes any formal specification) is an
area of active research in the formal methods and programming language com-
munities [39, 63, 64, 79], and thus still a challenging open question — let alone
the fact that some commercial secure processor designs are closed-source.

7

Second, a frequently asked question is what adversarial models our formal
abstraction defends against. The answer to such a question is processor-specific,
and thus outside the scope of our paper — we leave it to the secure proces-
sor itself to articulate the precise adversarial capabilities it protects against.
The formal models and security theorems in this paper hold assuming that the
adversary is indeed confined to the capabilities assumed by the specific secure
processor. As mentioned earlier, some processors defend only against software
adversaries [34]; others additionally defend against physical attackers [40–42,57];
others defend against a restricted class of software and/or physical attackers that
do not exploit certain side channels [2,7,56,59,72]. We refer the reader to a com-
prehensive systematization of knowledge paper by Shi et al. [70] for a taxonomy
and comparison of various secure processors.

Finally, it is also not our goal to propose new techniques that defend against
side-channel attacks, or suggest how to better architect secure processors —
these questions are being explored in an orthogonal but complementary line of
research [34,39–42,57,79,81].

2 Technical Roadmap

2.1 Formal Modeling

Modeling choices. To enable cryptographically sound reasoning, we adopt the
universal composition (UC) paradigm in our modeling [21, 22, 26]. At a high
level, the UC framework allows us to abstract complex cryptographic systems as
simple ideal functionalities, such that protocol composition can be modularized.
The UC framework also provides what is commonly referred to as “concurrent
composition” and “environmental friendliness”: in essence, a protocol π proven
secure in the UC framework can run in any environment such that 1) any other
programs or protocols executing possibly simultaneously will not affect the se-
curity of the protocol π, and 2) protocol π will not inject undesirable side effects
(besides those declared explicitly in the ideal abstraction) that would affect other
programs and protocols in the system.

More intuitively, if a system involving cryptography UC-realizes some ideal
functionality, henceforth, a (possibly non-cryptography-expert) programmer can
simply program the system pretending that he is making remote procedural calls
to a trusted third party, and basically in a worry-free manner. We refer the
reader to Appendix A for a more detailed overview of the UC framework. Before
we proceed, we stress the importance of cryptographically sound reasoning: by
contrast, earlier works in the formal methods community would make assump-
tions that cryptographic primitives such as encryption and signatures realize the
“most natural” ideal box without formal justification — and such approaches
have been shown to be flawed when the ideal box is actually instantiated with
cryptography [3–5,10,16,24,50,52,60,61].

Roadmap for formal modeling. We first describe an ideal functionality Gatt
that captures the core abstraction that a broad class of attested execution pro-

8

Gatt[Σ, reg]

// initialization:
On initialize: (mpk,msk) := Σ.KeyGen(1λ), T = ∅

// public query interface:
On receive∗ getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:
On receive∗ install(idx , prog) from some P ∈ reg:
if P is honest, assert idx = sid

generate nonce eid ∈ {0, 1}λ, store T [eid ,P] := (idx , prog,0), send eid to P

// local interface — resume an enclave:
On receive∗ resume(eid , inp) from some P ∈ reg:
let (idx , prog,mem) := T [eid ,P], abort if not found
let (outp,mem) := prog(inp,mem), update T [eid ,P] := (idx , prog,mem)
let σ := Σ.Sigmsk(idx , eid , prog, outp), and send (outp, σ) to P

Fig. 1: A global functionality modeling an SGX-like secure processor.
Blue (and starred∗) activation points denote reentrant activation points. Green
activation points are executed at most once. The enclave program prog may be
probabilistic and this is important for privacy-preserving applications. Enclave
program outputs are included in an anonymous attestation σ. For honest parties,
the functionality verifies that installed enclaves are parametrized by the session
id sid of the current protocol instance.

cessors intend to provide. We are well aware that various attested execution
processors make different design choices — most of them are implementation-
level details that do not reflect at the abstraction level, but a few choices do
matter at the abstraction level — such as whether the secure processor pro-
vides a trusted clock and whether it implements anonymous or non-anonymous
attestation.

In light of such differences, we first describe a basic, anonymous attestation
abstraction called Gatt that lies at the core of off-the-shelf secure processors such
as Intel SGX [7, 59]. We explore the expressive power of this basic abstraction
in the context of stateful obfuscation and multi-party computation. Later in the
paper, we explore variants of the abstraction such as non-anonymous attesta-
tion and trusted clocks. Therefore, in summary our results aim to be broadly
applicable to a wide class of secure processor designs.

The Gatt abstraction. We first describe a basic Gatt abstraction capturing the
essence of SGX-like secure processors that provide anonymous attestation (see
Figure 1). Here we briefly review the Gatt abstraction and explain the technical-

9

ities that arise in the formal modeling, but defer more detailed discussions to
Section 4.

1. Registry. First, Gatt is parametrized with a registry reg that is meant to
capture all the platforms that are equipped with an attested execution pro-
cessor. For simplicity, we consider a static registry reg in this paper.

2. Stateful enclave operations. A platform P that is in the registry reg may
invoke enclave operations, including

– install: installing a new enclave with a program prog, henceforth referred
to as the enclave program. Upon installation, Gatt simply generates a fresh
enclave identifier eid and returns the eid . This enclave identifier may now
be used to uniquely identify the enclave instance.

– resume: resuming the execution of an existing enclave with inputs inp.
Upon a resume call, Gatt executes the prog over the inputs inp, and obtains
an output outp. Gatt would then sign the prog together with outp as well as
additional metadata, and return both outp and the resulting attestation.

Each installed enclave can be resumed multiple times, and we stress that
the enclave operations store state across multiple resume invocations. This
stateful property will later turn out to be important for several of our appli-
cations.

3. Anonymous attestation. Secure processors such as SGX rely on group sig-
natures and other anonymous credential techniques [18, 19] to offer “anony-
mous attestation”. Roughly speaking, anonymous attestation allows a user to
verify that the attestation is produced by some attested execution processor,
without identifying which one. To capture such anonymous attestation, our
Gatt functionality has a manufacturer public key and secret key pair denoted
(mpk,msk), and is parametrized by a signature scheme Σ. When an enclave
resume operation is invoked, Gatt signs any output to be attested with msk us-
ing the signature scheme Σ. Roughly speaking, if a group signature scheme
is adopted as in SGX, one can think of Σ as the group signature scheme
parametrized with the “canonical” signing key. Gatt provides the manufac-
turer public key mpk to any party upon query — this models the fact that
there exists a secure key distribution channel to distribute mpk. In this way,
any party can verify an anonymous attestation signed by Gatt.

Globally shared functionality. Our Gatt functionality essentially captures all
attested execution processors in the world. Further, we stress that Gatt is globally
shared by all users, all applications, and all protocols. In particular, rather than
generating a different (mpk,msk) pair for each different protocol instance, the
same (mpk,msk) pair is globally shared.

More technically, we capture such sharing across protocols using the Uni-
versal Composition with Global Setup (GUC) paradigm [22]. As we show later,
such global sharing of cryptographic keys becomes a source of “imperfectness”
— in particular, due to the sharing of (mpk,msk), attestations signed by msk
from one protocol instance (i.e., or application) may now carry meaning in a

10

completely unrelated protocol instance, thus introducing potentially undesirable
side effects that breaks composition.

Additional discussions and clarifications. We defer more detailed discus-
sions of our modeling choices, and importantly, clarifications on how the envi-
ronment Z interacts with Gatt to Section 4.

In the entirety of this paper, we assume that parties interact with each other
over secure channels. As it well known how to achieve UC-secure channels (e.g.,
with a global PKI [27]), we do not lose any generality in our results by making
this assumption, which in turn allows us to somewhat simplify our protocols to
focus primarily on the arguably more interesting question of how to “extend”
such secure communication channels to enclaves running in secure processors.

2.2 Power of Attested Execution: Stateful Obfuscation

We show that the attested execution abstraction is indeed extremely powerful
as one would have expected. In particular, we show that attested execution pro-
cessors allow us to realize a new abstraction which we call “stateful obfuscation”

Theorem 1 (Informal). Assume that secure key exchange protocols exist.
There is a Gatt-hybrid protocol that realizes non-interactive stateful obfuscation,
which is not possible in plain settings, even when assuming stateless hardware
tokens or virtual-blackbox secure cryptographic obfuscation.

Stateful obfuscation allows an (honest) client to obfuscate a program and
send it to a server, such that the server can evaluate the obfuscated program
on multiple inputs, while the obfuscated program keeps (secret) internal state
across multiple invocations. We consider a simulation secure notion of stateful
obfuscation, where the server should learn only as much information as if it
were interacting with a stateful oracle (implementing the obfuscated program)
that answers the server’s queries. For example, stateful obfuscation can be a
useful primitive in the following application scenario: imagine that a client (e.g.,
a hospital) outsources a sensitive database (corresponding to the program we
wish to obfuscate) to a cloud server equipped with trusted hardware. Now, an
analyst may send statistical queries to the server and obtain differentially private
answers. Since each query consumes some privacy budget, we wish to guarantee
that after the budget is depleted, any additional query to the database would
return ⊥. We formally show how to realize stateful obfuscation from attested
execution processors. Further, as mentioned, we prove that stateful obfuscation
is not possible in the plain setting, even when assuming the existence of stateless
hardware tokens or assuming virtual-blackbox secure obfuscation.

2.3 Impossibility of Composable Two-Party Computation with a
Single Secure Processor

One natural question to ask is whether we can realize universally composable
(i.e., UC-secure) multi-party computation, which is known to be impossible in

11

the plain setting without any setup assumptions — but feasible in the presence of
a common reference string [21,23], i.e., a public random string that is generated
in a trustworthy manner freshly and independently for each protocol instance.
On the surface, Gatt seems to provide a much more powerful functionality than a
common reference string, and thus it is natural to expect that it will enable UC-
secure multi-party computation. However, upon closer examination, we find that
perhaps somewhat surprisingly, such intuition is subtly incorrect, as captured in
the following informal theorem.

Theorem 2 (Informal). If at least one party is not equipped with an attested
execution processor, it is impossible to realize UC-secure multi-party computation
absent additional setup assumptions (even when all others are equipped with an
attested execution processor).

Here the subtle technicalities arise exactly from the fact that Gatt is a global
functionality shared across all users, applications, and protocol instances. This
creates a non-deniability issue that is well-known to the cryptography commu-
nity. Since the manufacturer signature key (mpk,msk) is globally shared, attes-
tations produced in one protocol instance can carry side effects into another.
Thus, most natural protocol candidates that send attestations to other parties
will allow an adversary to implicate an honest party of having participated in a
protocol, by demonstrating the attestation to a third party. Further, such non-
deniability exists even when the secure processor signs anonymous attestations:
since if not all parties have a secure processor, the adversary can at least prove
that some honest party that is in Gatt’s registry has participated in the protocol,
even if he cannot prove which one. Intuitively, the non-deniability goes away if
all parties are equipped with a secure processor — note that this necessarily
means that the adversary himself must have a secure processor too. Since the
attestation is anonymous, the adversary will fail to prove whether the attestation
is produced by an honest party or he simply asked his own local processor to sign
the attestation. This essentially allows the honest party to deny participation in
a protocol.

Impossibility of extraction. We formalize the above intuition, and show that
not only natural protocol candidates that send attestations around suffer from
non-deniability, in fact, it is impossible to realize UC-secure multi-party compu-
tation if not all parties have secure processors. The impossibility is analogous to
the impossibility of UC-secure commitments in the plain setting absent a com-
mon reference string [23]. Consider when the real-world committer C is corrupt
and the receiver is honest. In this case, during the simulation proof, when the
real-world C outputs a commitment, the ideal-world simulator Sim must capture
the corresponding transcripts and extract the value v committed, and send v to
the commitment ideal functionality Fcom. However, if the ideal-world simulator
Sim can perform such extraction, the real-world receiver must be able too (since
Sim does not have extra power than the real-world receiver) — and this violates
the requirement that the commitment must be hiding. As Canetti and Fischlin
show [23], a common reference string allows us to circumvent this impossibility

12

by giving the simulator more power. Since a common reference string (CRS)
is a local functionality, during the simulation, the simulator can program the
CRS and embed a trapdoor — this trapdoor will allow the simulator to perform
extraction. Since the real-world receiver does not possess such a trapdoor, the
protocol still retains confidentiality against a real-world receiver.

Indeed, if our Gatt functionality were also local, our simulator Sim could
have programmed Gatt in a similar manner and extraction would have been
easy. In practice, however, a local Gatt function would mean that a fresh key
manufacturer pair (mpk,msk) must be generated for each protocol instance (i.e.,
even for multiple applications of the same user). Thus, a local Gatt clearly fails
to capture the reusability of real-world secure processors, and this justifies why
we model attested execution processors as a globally shared functionality.

Unfortunately, when Gatt is global, it turns out that the same impossibility
of extraction from the plain setting would carry over when the committer C is
corrupt and only the receiver has a secure processor. In this case, the simulator
Sim would also have to extract the input committed from transcripts emitted
from C. However, if the simulator Sim can perform such extraction, so can the
real-world receiver — note that in this case the real-world receiver is actually
more powerful than Sim, since the real-world receiver, who is in the registry, is
capable of meaningfully invoking Gatt, while the simulator Sim cannot!

It is easy to observe that this impossibility result no longer holds when the
corrupt committer has a secure processor — in this case, the protocol can require
that the committer C send its input to Gatt. Since the simulator captures all
transcripts going in and coming out of C, it can extract the input trivially. Indeed,
we show that not only commitment, but also general 2-party computation is
possible when both parties have a secure processor.

2.4 Composable Two-Party Computation with Omnipresent Secure
Processors

Theorem 3 (Informal). Assume that secure key exchange protocols exist.
Then there exists an Gatt-hybrid protocol that UC-realizes F2pc. Further, in this
protocol, only one party’s enclave needs to perform program-dependent computa-
tion.

We give an explicit protocol in Figure 2 which we will later revisit in Sec-
tion 6.2. We have two desiderata motivated by practical efficiency: 1) the protocol
should only perform O(1) amount of cryptographic computations, and specifi-
cally independent of the runtime of the function to be evaluated; and 2) only
one party’s enclave should perform program-dependent computation. The latter
requirement is useful in a client-server setting, where the client may be a weak
mobile device and the server is a cloud provider, and both parties equipped with
a secure processor. In particular, the client may wish to make a private query to
a private database that the server holds.

Nonetheless, for ease of exposition, we first describe the protocol assuming
both parties’ enclaves perform program-dependent evaluation — but we then

13

prog2pc[f,P0,P1, b]

On input (“keyex”, inpb, w): y
$←Zp, store w, and return gy

On input (“send”, gx, (w′, v′)):
assert that “commit” has been called
sk := (gx)y, ct := AE.Encsk(inpb, w

′, v′), return ct

On input (“compute”, ct):
assert that “send” has been called and ct not seen
(inp1−b, w

′, v) := AE.Decsk(ct), assert that decryption succeeds
if w′ = w, return v; else return outp := f(inp0, inp1)

Prot2pc[sid , f,P0,P1, b]

On input inpb from Z:
eid := Gatt.install(sid , prog2pc[f,P0,P1, b])
henceforth denote Gatt.resume(·) := Gatt.resume(eid , ·)
(gy, σ) := Gatt.resume(“keyex”, w) where w

$←{0, 1}λ
send (eid , gy, σ) to P1−b, await (eid ′, gx, σ′)
assert Σ.Vermpk((sid , eid

′, prog2pc[f,P0,P1, 1− b], gx, σ′)
(ct,) := Gatt.resume(“send”, gx, (inpb,⊥,⊥)), send ct to P1−b, await ct′

(outp,) := Gatt.resume(“compute”, ct′), output outp

Fig. 2: Composable 2-party computation: both server and client have
secure processors. AE denotes authenticated encryption. All ITIs’ activation
points are non-reentrant. When an activation point is invoked for more than once,
the ITI simply outputs ⊥. Although not explicitly noted, if Gatt ever outputs
⊥ upon a query, the protocol aborts outputting ⊥. The group parameters (g, p)
are hardcoded into prog2pc.

remark how one can easily modify the protocol such that only one party’s enclave
needs to perform evaluation. It turns out that designing such a protocol involves
a few intriguing technicalities. Below we first give an overview of the protocol,
and then we explain the technicalities.

– First, each party sends its input to its own secure enclave. At this moment,
each party also chooses a high-entropy trapdoor w, and sends it to its local
enclave along with its input. We will later explain why this high-entropy
trapdoor w is needed.

– Both parties’ secure processors then perform a key exchange to establish a se-
cret key sk for an authenticated encryption scheme. Each party’s enclave then
encrypts its input under sk, and sends the resulting ciphertext ct to the other
party’s enclave. Now each enclave can decrypt ct and perform evaluation,
and each party can query its local enclave to obtain the output.

– Interestingly, we need to plant a backdoor in the enclave program to prove
security under universal composition. The backdoor works as follows: if the
ciphertext ct decrypts to a pair of values (w′, v) such that w′ = w, i.e., w′

14

matches the high-entropy trapdoor w that the party had sent to its local
enclave earlier, then the enclave program simply outputs v along with its
attestation (instead of the true output of the computation).

We now explain the technicalities behind this protocol and particularly, why
we need the high-entropy trapdoor w and the backdoor in the enclave program.

– Extraction. First, extraction is made possible since each party sends their
input directly to its local enclave. If a party is corrupt, this interaction will
be captured by the simulator who can then extract the corrupt party’s input;

– Equivocate. We now explain how the trapdoor w and the backdoor in the
enclave program allow for equivocation in the simulation proof. Recall that
initially, the simulator does not know the honest party’s input. To simulate
the honest party’s message for the adversary (which contains an attestation
from the enclave), the simulator must send a dummy input to Gatt on behalf
of the honest party to obtain the attestation. When the simulator manages
to extract the corrupt party’s input, it will send the input to the ideal func-
tionality F2pc and obtain the outcome of the computation denoted outp∗.
Now when the corrupt party queries its local enclave for the output, the
simulator must get Gatt to sign the correct outp∗ (commonly referred to as
equivocation)— but clearly this is not possible through the normal execution
path.
In our proof, the simulator performs equivocation by invoking the backdoor:
by providing the trapdoor corresponding to the corrupt party, the enclave
program will let the simulator program the output to whatever it wants.
We stress that this backdoor does not harm the honest party’s security in
the real world, since the honest party (nor its enclave) is never supposed to
send around its private trapdoor. However, in the simulation, notice that the
simulator can extract the corrupt party’s trapdoor in exactly the same way
it extracts the corrupt party’s input, and therefore the simulator can use the
private trapdoor to program the enclave.

– A note on anonymous attestation. It is interesting to note how our protocol
relies on the attestation being anonymous for security. Specifically, in the
proof, the simulator needs to simulate the honest party’s messages for the
adversary A. To do so, the simulator will simulate the honest party’s enclave
on its own (i.e., the adversary’s) secure processor — and such simulation
is possible because the attestations returned by Gatt are anonymous. Had
the attestation not been anonymous (e.g., bindng to the party’s identifier),
the simulator would not be able to simulate the honest party’s enclave (see
Section 9.2 for more discussions).

It is not hard to see that the aforementioned protocol can be adapted such
that only one party’s enclave performs computation. Specifically, we can have
P1’s enclave perform evaluation and sign the output, whereas P0’s enclave stops
after encrypting P0’s the input. At the end of the protocol, P1 sends the signed
output back to P0, and in this way both parties obtain output.

15

2.5 Circumventing the Impossibility with Minimal Global Setup

In practice, it would obviously be desirable if we could allow composable multi-
party computation in the presence of a single attested execution processor. As
a desirable use case, imagine multiple clients (e.g., hospitals), each with sensi-
tive data (e.g., medical records), that wish to perform some computation (e.g.,
data mining for clinical research) over their joint data. Moreover, they wish to
outsource the data and computation to an untrusted third-party cloud provider.
Specifically, the clients may not have secure processors, but as long as the cloud
server does, we wish to allow outsourced secure multi-party computation.

We now demonstrate how to introduce a minimal global setup assumption to
circumvent this impossibility. Specifically, we will leverage a global augmented
common reference string [22], henceforth denoted Gacrs. Although the feasibility
of UC-secure multi-party computation is known with Gacrs even absent secure
processors [22], existing protocols involve cryptographic computations that are
(at least) linear in the runtime of the program. Our goal is to demonstrate a
practical protocol that performs any program-dependent computation inside the
secure enclave, and performs only O(1) cryptographic computation.

Theorem 4 (Informal). Assume that secure key exchange protocols exist.
Then, there exists a (Gacrs,Gatt)-hybrid protocol that UC-realizes Fmpc and makes
use of only a single secure processor. Further, this protocol performs all program-
dependent computations inside the secure processor’s enclave (and not crypto-
graphically).

Minimal global setup Gacrs. To understand this result, we first explain the
minimal global setup Gacrs. First, Gacrs provides a global common reference
string. Second, Gacrs also allows each (corrupt) party P to query an identity
key for itself. This identity key is computed by signing the party’s identifier P
using a global master secret key. Note that such a global setup is minimal since
honest parties should never have to query for their identity keys. The identity
key is simply a backdoor provided to corrupt parties. Although at first sight, it
might seem counter-intuitive to provide a backdoor to the adversary, note that
this backdoor is also provided to our simulator — and this increases the power
of the simulator allowing us to circumvent the aforementioned impossibility of
extraction, and design protocols where honest parties can deny participation.

MPC with a single secure processor and Gacrs. We consider a setting with
a server that is equipped with a secure processor, and multiple clients that do
not have a secure processor.

Let us first focus on the (more interesting) case when the server and a subset
of the clients are corrupt. The key question is how to get around the impossibility
of extraction with the help of Gacrs — more specifically, how does the simulator
extract the corrupt clients’ inputs? Our idea is the following — for the readers’
convenience, we skip ahead and present the detailed protocol in Figure 3 as we
explain the technicalities, but we will revisit it and present formal notations and
proofs in Section 7.

16

progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn]

On input (“init”): (pk, sk)← PKE.Gen(1λ), return pk

On input (“input”, {cti}i∈[n]):
for i ∈ [n]: (inpi, ki) := PKE.Decsk(cti), return Ω := {cti}i∈[n]

On input (“extract”, {idki}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, vi := inpi, else vi := ⊥, return {vi}i∈[n]

On input (“program”, {idki, ui}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, outpi := ui

On input (“proceed”, {ct′i}i∈[n]):
for i ∈ [n]: assert AE.Decki(ct

′
i) = “ok”

outp∗ := f(inp1, . . . , inpn), return “done”

On input∗ (“output”,Pi):
assert outp∗ has been stored
if outpi has been stored, return (Pi, outpi), else return (Pi, outp∗)

Protmpc[sid , f,S,P1, . . . ,Pn]

Server S:

let eid := Gatt.install(sid , progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn])
henceforth let Gatt.resume(·) := Gatt.resume(eid , ·)
let (pk, σ) := Gatt.resume(“init”), send (eid , ψ(Pi, pk, σ)) to each Pi
for each Pi: await (“input”, cti) from Pi
(Ω, σ) := Gatt.resume(“input”, {cti}i∈[n]), send ψ(Pi, Ω, σ) to each Pi
for each Pi: await (“proceed”, ct′i) from Pi
Gatt.resume(“proceed”, {ct′i}i∈[n])
for each Pi:

(Pi, outpi, σi) := Gatt.resume(“output”,Pi), send ψ(Pi, (Pi, outpi), σi) to Pi

Remote Party Pi:
For ψ := (msg, C, π), let Ver(ψ) := Ver(crs, (sid , eid , C,mpk,Gacrs.mpk,Pi,msg), π)
On input inp from Z:

await (eid , ψ), assert Ver(ψ), parse ψ := (pk,)

k ← {0, 1}λ, ct = PKE.Encpk(inp, k)
send (“input”, ct) to S, await ψ from S, assert Ver(ψ), parse ψ := (Ω,)
assert Ω[i] = ct, send eid to all parties, wait for all parties to ack eid
let ct′ := AE.Enck(“ok”), send (“proceed”, ct′) to S, await ψ, assert Ver(ψ)
parse ψ := ((Pi, outp),), if parse successful: output Deck(outp)

Fig. 3: Composable multi-party computation with a single secure
processor. ψ(P,msg, σ) outputs a tuple (msg, C, π), where π is a witness-
indistinguishable proof that the ciphertext C either encrypts a valid attestation
σ on msg, or encrypts P’s identity key. PKE and AE denote public-key encryption
and authenticated encryption respectively.

17

– First, we parametrize the enclave program with the global common reference
string Gacrs.mpk.

– Second, we add a backdoor in the enclave program, such that the enclave
program will return party Pi’s input (to the MPC protocol) if the caller pro-
vides the correct identity key for Pi. We note that honest parties’ security
will not be harmed by this backdoor, since honest parties will never even
query Gacrs for their identity keys, and thus their identity keys should never
leak. However, in the simulation, the simulator will query Gacrs for all cor-
rupt parties’ identity keys, which will allow the simulator to extract corrupt
parties’ inputs by querying this backdoor in the enclave program.

– Third, we introduce yet another backdoor in the enclave program that al-
lows the caller to program any party’s output, provided that the caller can
demonstrate that party’s identity key. Again, in the real world, this backdoor
should not harm honest parties’ security because honest parties’ identity keys
never get leaked. Now in the simulation, the simulator will query Gacrs for all
corrupt parties’ identity keys which will give the simulator the power to query
the corrupt parties’ outputs. Such “programmability” is necessary, because
when the simulator obtains the outcome outp from Fmpc, it must somehow
obtain the enclave’s attestation on outp — however, since the simulator does
not know honest parties’ inputs, he cannot have provided honest parties’ in-
puts to the enclave. Therefore, there must be a special execution path such
that the simulator can obtain a signature on outp from the enclave.

Now, let us turn our attention to the case when the server is honest, but
a subset of the clients are corrupt. In this case, our concern is how to achieve
deniability for the server — specifically, an honest server should be able to deny
participation in a protocol. If the honest server sends an attestation in the clear
to the (possibly corrupt) clients, we cannot hope to obtain such deniability,
because a corrupt client can then prove to others that some honest party in
Gatt’s registry must have participated, although it might not be able to prove
which one since the attestation is anonymous. To achieve deniability, our idea is
the following:

– Instead of directly sending an attestation on a message msg, the server will
produce a witness indistinguishable proof that either he knows an attesta-
tion on msg, or he knows the recipient’s identity key. Note that in the real
world protocol, the server always provide the attestation as the witness when
producing the witness indistinguishable proof.

– However, in the simulation when the server is honest but a subset of the
clients are corrupt, the simulator is unable to query any enclave since none
of the corrupt clients have a secure processor. However, the simulator can
query Gacrs and obtain all corrupt parties’ identity keys. In this way, the
simulator can use these identity keys as an alternative witness to construct
the witness indistinguishable proofs — and the witness indistinguishability
property ensures that the adversary (and the environment) cannot distinguish
which witness was provided in constructing the proof.

18

2.6 Fairness

It is well-known that fairness is in general impossible in secure two-party com-
putation in the plain model (even under weaker security definitions that do
not necessarily aim for concurrent composition). Intuitively, the party that ob-
tains the output first can simply abort from the protocol thus preventing the
other party from learning the outcome. Cleve [32] formalized this intuition and
demonstrated an impossibility result for fair 2-party coin tossing, which in turns
suggests the impossibility of fairness in general 2-party computation. Interest-
ingly, a sequence of recent works show that although fairness is impossible in
general, there are a class of non-trivial functions that can indeed be computed
fairly [9, 46,47].

Since real-world secure processors such as Intel’s SGX offer a “trusted clock”
abstraction, we explore whether and how such trusted clocks can help in at-
taining fairness. It is not hard to see that Cleve’s lower bound still applies, and
fairness is still impossible when our attested execution processors do not have
trusted clocks. We show how having trusted clocks in secure processors can help
with fairness.

First, we show that fairness is indeed possible in general 2-party computation,
when both parties have secure processors with trusted clocks. Specifically, we
consider a clock-adjusted notion of fairness which we refer to as ∆-fairness.
Intuitively, ∆-fairness stipulates that if the corrupt party receives output by
some round r, then the honest party must receive output by round ∆(r), where
∆ is a polynomial function.

Theorem 5 (Informal). Assume that secure key exchange protocols exist, and
that both parties have an attested execution processor with trusted clocks, then
there exists a protocol that UC-realizes F2pc with ∆-fairness where ∆(r) = 2r.

In other words, if the corrupt party learns the outcome by round r, the honest
party is guaranteed to learn the outcome by round 2r. Our protocol is a tit-for-
tat style protocol that involves the two parties’ enclaves negotiating with each
other as to when to release the output to its owner. At a high level, the protocol
works as follows:

– First, each party sends their respective input to its local secure processor.
– The two secure processors then perform a key exchange to establish a secret

key k for an authenticated encryption scheme. Now the two enclave exchange
the parties’ inputs over a secure channel, at which point both enclaves can
compute the output.

– However, at this point, the two enclaves still withhold the outcome from their
respective owners, and the initial timeout value δ := 2λ is set to exponentially
large in λ. In other words, each enclave promises to release the outcome to
its owner in round δ.

– At this moment, the tit-for-tat protocol starts. In each turn, each secure
enclave sends an acknowledgment to the other over a secure channel. Upon
receiving the other enclave’s acknowledgment, the receiving enclave would

19

now halve the δ value, i.e., set δ := δ
2 . In other words, the enclave promises

to release the outcome to its owner by half of the original timeout.
– If both parties are honest, then after λ turns, their respective enclaves disclose

the outputs to each party.
– If one party is corrupt, then if he learns the outcome by round r, clearly the

other party will learn the outcome by round 2r.

To have provably security in the UC model, technicalities similar to our
earlier 2-party computation protocol (the case when both parties have a secure
processor) exist. More specifically, both parties have to send inputs to their local
enclave to allow extraction in the simulation. Moreover, the enclave program
needs to leave a second input (that is not used in the real-world protocol) such
that the simulator can program the output for the corrupt party after learning
the output from F2pc.

It is also worth noting that our protocol borrows ideas from gradual release-
style protocols [17, 38, 43]. However, in comparison, known gradual release-style
protocols rely on non-standard assumptions which are not necessary in our pro-
tocol when a clock-aware Gatt is available.

We next consider whether a single secure processor enabled with trusted clock
can help with fairness. We show two results: first, fairness is in impossible for
generic functionalities when only one party has a clock-aware secure processor;
and second, a single clock-aware secure processor allows us to fairly compute a
broader class of functions than the plain setting.

Theorem 6 (Informal). Assume that one-way functions exist, then, fair 2-
party computation is impossible for general functionalities when only one party
has a clock-aware secure processor (even when assuming the existence of Gacrs).

First, to prove the general fairness impossibility in the presence of a single
secure processor, we consider a specific contract signing functionality Fcontract

in which two parties, each with a secret signing key, exchange signatures over
a canonical message, say 0 (see Section 8 for a formal definition). In the plain
model, there exists a (folklore) fairness impossibility proof for this functionality
— and it helps to understand this proof first before presenting ours. Imprecisely
speaking, if one party, say P0, aborts prior to sending the last protocol message,
and P0 is able to output a correct signature over the message, then P1 must
be able to output the correct signature as well by fairness. As a result, we can
remove protocol messages one by one, and show that if the previous protocol Πi

fairly realizes Fcontract, then Πi−1 (that is, the protocol Πi with the last message
removed) must fairly realize Fcontract as well. Eventually, we will arrive at the
empty protocol, and conclude that the empty protocol fairly realizes Fcontract

as well which clearly is impossible if the signature scheme is secure. Although
the intuition is simple, it turns out that the formal proof is somewhat subtle
— for example, clearly the proof should not work had this been some other
functionality that is not contract signing, since we know that there exist certain
functions that can be computed fairly in the plain model [9, 46, 47]. Therefore,
we first formalize this folklore proof in Section 8.4 before presenting our own.

20

We now discuss how we can prove impossibility when only one party has a
clock-aware secure processor. The overall structure of the proof is very similar
to the aforementioned folklore proof where protocol messages are removed one
by one, however, as we do so, we need to carefully bound the time by which
the corrupt (i.e., aborting) party learns output. Without loss of generality, let
us assume that party P0 has a secure processor and party P1 does not. As we
remove protocol messages one by one, in each alternate round, party P1 is the
aborting party. Suppose party P1 aborts in round r ≤ g(λ) where g(λ) is the
runtime of the protocol if both parties are honest. Since P1 does not have a
secure processor, if he can learn the result in polynomially many rounds by the
honest protocol, then he must be able to learn the outcome in round r too — in
particular, even if the honest protocol specifies that he waits for more rounds, he
can just simulate the fast forwarding of his clock in a single round and complete
the remainder of his execution. This means that as we remove protocol messages
one by one, in every alternate turn, the aborting party is guaranteed to obtain
output by round g(λ) — and thus even if he aborts, the other party must receive
output by round ∆(g(λ)). Similar as before, we eventually arrive at an empty
protocol which we conclude to also fairly compute Fcontract (where the parties
do not exchange protocol messages) which clearly is impossible if the signature
scheme is secure.

We stress that the ability to reset the aborting party’s runtime back to g(λ)
in every alternative round is important for the proof to work. In particular, if
both parties have a clock-aware secure processor, the lower bound clearly should
fail in light of our upper bound — and the reason that it fails is because the
runtime of the aborting party would increase by a polynomial factor every time
we remove a protocol message, and after polynomially many such removals the
party’s runtime would become exponential.

We also note that the above is simply the intuition, and formalizing the proof
is somewhat subtle which we leave to Section 8.4.

Although fairness is impossible in general with only one clock-aware secure
processor, we show that even one clock-aware secure processor can help with
fairness too. Specifically, it broadens the set of functions that can be computed
fairly in comparison with the plain setting.

Theorem 7 (Informal). Assume that secure key exchange protocols exist, then
when only a single party has a clock-aware secure processor, there exist functions
that can be computed with ∆-fairness in the (Gatt,Gacrs)-hybrid model, but cannot
be computed fairly in the Gacrs-hybrid model.

Specifically, we show that 2-party fair coin toss, which is known to be impos-
sible in the plain model, becomes possible when only one party has a clock-aware
secure processor. Intuitively, the issue in the standard setting is that the party
that obtains the output first can examine the outcome coin, and can abort if
he does not like the result, say abort on 0. Although the other party can now
toss another coin on his own — the first party aborting already suffices to bias
the remaining party’s output towards 1. We now propose a (Gatt,Gacrs)-hybrid

21

protocol that realizes 2-party fair toss, assuming that Gatt is clock aware and
that only one party has a secure processor. The idea is the following. Let the
server S and the client C be the two parties involved, and suppose that the
server has a secure processor but the client does not. The server’s enclave first
performs key exchange and establishes a secure channel with the client. Now the
server’s enclave flips a random coin and sends it to the client over the secure
channel in a specific round, say, round 3 (e.g., assuming that key exchange takes
two rounds). At this moment, the server does not see the outcome of the coin
yet. If the client does not receive this coin by the end of round 3, it will flip an
independent coin on its own; otherwise it outputs the coin received. Finally, in
round 4, the server will receive the outcome of the coin from its local enclave.
Observe that server can decide to abort prior to sending the client the coin (over
the secure channel), however, the server cannot base the decision upon the value
of the coin, since he does not get to see the coin until round 4. To formalize this
intuition and specifically to prove the resulting protocol secure in the UC model,
again we need to rely on the help of Gacrs.

2.7 Additional Results

We provide some additional interesting variations in modeling and results.

The transparent enclave model. Many known secure processors are known to
be vulnerable to certain side-channel attacks such as cache-timing or differential
power analysis. Complete defense against such side channels remains an area of
active research [39–42,57,79].

Recently, Tramèr et al. [77] ask the question, what kind of interesting ap-
plications can we realize assuming that such side-channels are unavoidable in
secure processors? Tramèr et al. [77] then propose a new model which they call
the transparent enclave model. The transparent enclave model is almost the
same as our Gatt, except that the enclave program leaks all internal states to
the adversary A. Nonetheless, Gatt still keeps its master signing key msk secret.
In practice, this model requires us to only spend effort to protect the secure
processor’s attestation algorithm from side channels, and we consider the entire
user-defined enclave program to be transparent to the adversary.

Tramèr et al. then show how to realize interesting security tasks such as
cryptographic commitments and zero-knowledge proofs with only transparent
enclaves. We note that Tramèr et al. adopt modeling techniques that inherit
from an earlier manuscript version of the present paper. However, Tramèr et al.
model Gatt as a local functionality rather than a globally shared functionality
— and this lets them circumvent several technical challenges that stem from
the functionality being globally shared, and allow them to achieve universally
composable protocols more trivially. As mentioned earlier, if Gatt were local, in
practice this would mean that a fresh (mpk,msk) pair is generated for every
protocol instance — even for different applications of the same user. This clearly
fails to capture the reusability of real-world secure processors.

22

We show how to realize UC-secure commitments assuming only transparent
enclaves, denoted Ĝatt, when both parties have a secure processor (since other-
wise the task would have been impossible as noted earlier). Although intuition
is quite simple — the committer could commit the value to its local enclave, and
later ask the enclave to sign the opening — it turns out that this natural protocol
candidate is not known to have provable security. Our actual protocol involves
non-trivial techniques to achieve equivocation when the receiver is corrupt, a
technical issue that arises commonly in UC proofs.

Theorem 8 (Informal). Assume that secure key exchange protocols and one-

way functions exist. There is a Ĝatt-hybrid protocol that UC-realizes Fcom where
Ĝatt is the transparent enclave functionality.

Challenge in achieving equivocation. We note that because the committer must
commit its value b to its local enclave, extraction is trivial when the committer is
corrupt. The challenge is how to equivocate when the receiver is corrupt. In this
case, the simulator must first simulate for the corrupt receiver a commitment-
phase message which contains a valid attestation. To do so, the simulator needs to
ask its enclave to sign a dummy value — note that at this moment, the simulator
does not know the committed value yet. Later, during the opening phase, the
simulator learns the opening from the commitment ideal functionality Fcom. At
this moment, the simulator must simulate a valid opening-phase message. The
simulator cannot achieve this through the normal execution path of the enclave
program, and therefore we must provide a special backdoor for the simulator
to program the enclave’s attestation on the opened value. Furthermore, it is
important that a real-world committer who is potentially corrupt cannot make
use of this backdoor to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must
accept a special value c for which the receiver knows a trapdoor x such that
owf(x) = c, where owf denotes a one-way function. Further, the committer’s
enclave must produce an attestation on the value c such that the receiver can
be sure that the correct c has been accepted by the committer’s enclave. Now,
if the committer produces the correct trapdoor x, then the committer’s enclave
will allow it to equivocate on the opening. Note that in the real-world execution,
the honest receiver should never disclose x, and therefore this backdoor does not
harm the security for an honest receiver. However, in the simulation when the
receiver is corrupt, the simulator can capture the receiver’s communication with
Ĝatt and extract the trapdoor x. Thus the simulator is now able to program the
enclave’s opening after it learns the opening from the Fcom ideal functionality.

More specifically, the full protocol works as follows:

– First, the receiver selects a random trapdoor x, and sends it to its local
enclave. The local enclave computes c := owf(x) where owf denotes a one-
way function, and returns (c, σ) where σ is an attestation for c.

– Next, the committer receives (c, σ) from the receiver. If the attestation ver-
ifies, it then sends to its enclave the bit b to be committed, along with the

23

value c that is the outcome of the one-way function over the receiver’s trap-
door x. The committer’s secure processor now signs the c value received in
acknowledgment, and the receiver must check this attestation to make sure
that the committer did send the correct c to its own enclave.

– Next, during the opening phase, the committer can ask its local enclave to
sign the opening of the committed value, and demonstrate the attestation to
the receiver to convince him of the opening. Due to a technicality commonly
referred to as “equivocation” that arises in UC proofs, the enclave’s “open”
entry point provides the following backdoor: if the caller provides a pair of
values (x, b′) such that owf(x) = c where c was stored earlier by the enclave,
then the enclave will sign b′ instead of the previously committed value b.

Non-anonymous attestation. Although most of the paper is concerned about
modeling anonymous attested execution as inspired by Intel’s most recent
SGX [7,59] and later versions of TPM [2], some secure processors instead imple-
ment non-anonymous attestation. In non-anonymous attestation, the signature
binds to the platform’s identity. Typically in a real-world implementation, the
manufacturer embeds a long-term signing key henceforth denoted ak in each
secure processor. The manufacturer then signs a certificate for the ak using
its manufacturer key msk. In formal modeling, such a certificate chain can be
thought of as a signature under msk, but where the message is prefixed with the
platform’s identity (e.g., ak).

It is not hard to see that our (Gatt,Gacrs)-hybrid protocol that realizes multi-
party computation with a single secure processor can easily be adapted to work
for the case of non-anonymous attestation as well. However, we point out that our
2-party protocol assuming omnipresent secure processors would not be secure if
we directly replaced the signatures with non-anonymous ones. Intuitively, since
in the case of non-anonymous attestation, attestations bind to the platform’s
identity, if such signatures are transferred in the clear to remote parties, then
a corrupt party can convince others of an honest party’s participation in the
protocol simply by demonstrating a signature from that party. In comparison, if
attestations were anonymous and secure processors are omnipresent, then this
would not have been an issue since the adversary could have produced such a
signature on its own by asking its local secure processor.

2.8 Related Work

Trusted hardware built by architects. The architecture community have
been designing and building general-purpose secure processors for several
decades [7, 28,34,39–42,56,57,59,72,79]. The motivation for having secure pro-
cessors is to minimize the trust placed in software (including the operating sys-
tem and user applications) — and this seems especially valuable since software
vulnerabilities have persisted and will likely continue to persist. Several efforts
have been made to commercialize trusted hardware such as TPMs [2], Arm’s
Trustzone [6, 8], and Intel’s SGX [7, 59]. As mentioned earlier, many of these

24

secure processors adopt a similar attested execution abstraction despite notable
differences in architectural choices, instruction sets, threat models they defend
against, etc. For example, some secure processors defend against software-only
adversaries [34]; others additionally defend against physical snooping of mem-
ory buses [41, 42, 57]; the latest Intel SGX defends against restricted classes of
software and physical attackers, particularly, those that do not exploit certain
side channels such as timing, and do not observe page swaps or memory access
patterns (or observe but discard such information). A comprehensive survey and
comparison of various secure processors is beyond the scope of this paper, and
we refer the reader to the recent work by Shi et al. [70] for a systematization of
knowledge and comparative taxonomy.

Besides general-purpose secure processors, other forms of trusted hardware
also have been built and commercialized, e.g., hardware cryptography accelera-
tors.

Cryptographers’ explorations of trusted hardware. The fact that general-
purpose secure processors being built in practice have more or less converged
to such an abstraction is interesting. By contrast, the cryptography community
have had a somewhat different focus, typically on the minimal abstraction needed
to circumvent theoretical impossibilities rather than practical performance and
cost effectiveness [30, 36, 45, 48, 53]. For example, previous works showed what
minimal trusted hardware abstractions are needed to realize tasks such as simu-
lation secure program obfuscation, functional encryption, and universally com-
posable multiparty computation — tasks known to be impossible in the plain
setting. These works do not necessarily focus on practical cost effectiveness, e.g.,
some constructions rely on primitives such as fully homomorphic encryption [30],
others require sending one or more physical hardware tokens during the proto-
col [45, 48], thus limiting the protocol’s practicality and the hardware token’s
global reusability.

Use of trusted hardware in applications. Numerous works have demon-
strated how to apply trusted hardware to design secure cloud systems [13, 35,
58, 67, 68], cryptocurrency systems [80], collaborative data analytics applica-
tions [62], and others [14, 29, 65, 69]. Due to the lack of formal abstractions
for secure processors, most of these works take an approach that ranges from
heuristic security to semi-formal reasoning. We hope that our work can lay the
foundations for formally correctly employing secure processors in applications.

Formal security meets realistic trusted hardware. A couple earlier works
have aimed to provide formal abstractions for realistic trusted hardware [12,71],
however, they either do not support cryptographically sound reasoning [71], or do
not support cryptographically sound composition in general protocol design [12].

We note that our goal of having cryptographically sound formal abstractions
for trusted hardware is complementary and orthogonal to the goal of providing
formally correct implementations of trusted hardware [39,79]. In general, build-
ing formally verified implementations of trusted hardware — particularly, one

25

that realizes the abstractions proposed in this paper — still remains a grand
challenge of our community.

3 Formal Definitions, Constructions, and Proofs

In the interest of space, we present our formal definitions, constructions, and
proofs in the Appendices — we refer the reader to the technical roadmap section
for an intuitive explanation of the key technical insights, the technicalities that
arise in proofs, and how we handle them.

References

1. Intel SGX for dummies (intel SGX design objec-
tives). https://software.intel.com/en-us/blogs/2013/09/26/

protecting-application-secrets-with-intel-sgx.
2. Trusted computing group. http://www.trustedcomputinggroup.org/.
3. Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational in-

terpretation. In Theoretical Aspects of Computer Software, 4th International Sym-
posium (TACS), pages 82–94, 2001.

4. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). J. Cryptology, 20(3):395, 2007.

5. Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of
formal encryption in the presence of key-cycles. In Computer Security - ESORICS
2005, 10th European Symposium on Research in Computer Security, Milan, Italy,
September 12-14, 2005, Proceedings, pages 374–396, 2005.

6. Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security.
Information Quarterly, 3(4):18–24, 2004.

7. Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative
technology for cpu based attestation and sealing. In HASP, 2013.

8. ARM Limited. ARM Security Technology Building a Secure System using
TrustZone R© Technology, Apr 2009. Reference no. PRD29-GENC-009492C.

9. Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete
characterization of fairness in secure two-party computation of boolean functions.
In Theory of Cryptography Conference (TCC), pages 199–228, 2015.

10. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally composable
cryptographic library. IACR Cryptology ePrint Archive, 2003:15, 2003.

11. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
CRYPTO, 2001.

12. Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX. In
IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016, pages 245–260, 2016.

13. Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from
an untrusted cloud with haven. In OSDI, 2014.

14. Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. vTPM: virtualizing the trusted platform module. In
USENIX Security, 2006.

26

https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
http://www.trustedcomputinggroup.org/

15. Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT,
2011.

16. Florian Bohl and Dominique Unruh. Symbolic universal composability. In Pro-
ceedings of the 2013 IEEE 26th Computer Security Foundations Symposium, CSF
’13, pages 257–271, 2013.

17. Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, 2000.
18. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In

CCS, 2004.
19. Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear pairing. IACR

Cryptology ePrint Archive, 2009:95, 2009.
20. Ran Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 2000.
21. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, 2001.
22. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-

posable security with global setup. In TCC. 2007.
23. Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances

in Cryptology (CRYPTO), pages 19–40, 2001.
24. Ran Canetti and Jonathan Herzog. Universally composable symbolic security anal-

ysis. J. Cryptology, 24(1):83–147, 2011.
25. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with

a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 597–608, 2014.

26. Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO,
2003.

27. Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authen-
tication and key-exchange with global pki. In IACR International Workshop on
Public Key Cryptography, pages 265–296. Springer, 2016.

28. David Champagne and Ruby B Lee. Scalable architectural support for trusted
software. In HPCA, 2010.

29. Chen Chen, Himanshu Raj, Stefan Saroiu, and Alec Wolman. cTPM: A cloud
TPM for cross-device trusted applications. In NSDI, 2014.

30. Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption
from (small) hardware tokens. In Asiacrypt, 2013.

31. Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption
from (small) hardware tokens. In ASIACRYPT, 2013.

32. R Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
pages 364–369, 1986.

33. Victor Costan and Srini Devadas. Intel SGX explained. Manuscript, 2015.
34. Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware ex-

tensions for strong software isolation. Cryptology ePrint Archive, Report 2015/564,
2015. http://eprint.iacr.org/.

35. Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chun-
wang Zhang. M2R: Enabling stronger privacy in MapReduce computation. In
USENIX Security, 2015.

36. Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Basing obfus-
cation on simple tamper-proof hardware assumptions. IACR Cryptology ePrint
Archive, 2011:675, 2011.

27

http://eprint.iacr.org/

37. Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Implementing re-
settable uc-functionalities with untrusted tamper-proof hardware-tokens. In TCC,
2013.

38. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6), June 1985.

39. Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and G. Ed-
ward Suh. Full-processor timing channel protection with applications to secure
hardware compartments. 2015.

40. Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure pro-
cessor architecture for encrypted computation on untrusted programs. In STC,
2012.

41. Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Ste-
fanov, and Srinivas Devadas. RAW Path ORAM: A low-latency, low-area hardware
ORAM controller with integrity verification. IACR Cryptology ePrint Archive,
2014:431, 2014.

42. Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan,
and Srinivas Devadas. Suppressing the oblivious RAM timing channel while making
information leakage and program efficiency trade-offs. In HPCA, pages 213–224,
2014.

43. Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fair-
ness and composability of cryptographic protocols. In TCC, 2006.

44. Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran Tromer.
Physical key extraction attacks on pcs. Commun. ACM, 59(6):70–79, May 2016.

45. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In CRYPTO, 2008.

46. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In TCC, 2009.

47. S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. J. ACM, 58(6):24:1–24:37, December
2011.

48. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC, 2010.

49. Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin R. B. Butler, and
Patrick Traynor. Using intel software guard extensions for efficient two-party secure
function evaluation. In FC, 2016.

50. Omer Horvitz and Virgil D. Gligor. Weak key authenticity and the computational
completeness of formal encryption. In CRYPTO, pages 530–547, 2003.

51. Intel Corporation. Intel R© Software Guard Extensions (Intel R© SGX), Jun 2015.
Reference no. 332680-002.

52. Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture:
Soundness of formal encryption in the presence of active adversaries. In Program-
ming Languages and Systems, 14th European Symposium on Programming,ESOP
2005, Held as Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), pages 172–185, 2005.

53. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In EUROCRYPT, 2007.

54. Bernhard Kauer. Tpm reset attack. http://www.cs.dartmouth.edu/~pkilab/

sparks/.
55. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Advances in Cryptology—CRYPTO’99, pages 388–397. Springer, 1999.

28

http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/

56. David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices, 35(11):168–177, 2000.

57. Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in
a secure processor. In CCS, 2013.

58. Lorenzo Martignoni, Pongsin Poosankam, Matei Zaharia, Jun Han, Stephen Mc-
Camant, Dawn Song, Vern Paxson, Adrian Perrig, Scott Shenker, and Ion Stoica.
Cloud terminal: Secure access to sensitive applications from untrusted systems. In
USENIX ATC, 2012.

59. Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. HASP, 13:10, 2013.

60. Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-
Rogaway language of encrypted expressions. J. Comput. Secur., 12(1):99–129,
January 2004.

61. Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Theory of Cryptography Conference (TCC), 2004.

62. Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine learn-
ing on trusted processors. In 25th USENIX Security Symposium (USENIX Security
16), August 2016.

63. Adam Petcher and Greg Morrisett. The foundational cryptography framework. In
Principles of Security and Trust - 4th International Conference, POST 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, pages 53–72, 2015.

64. Adam Petcher and Greg Morrisett. A mechanized proof of security for searchable
symmetric encryption. In CSF, 2015.

65. Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In USENIX
Security, 2004.

66. Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using arm trust-
zone to build a trusted language runtime for mobile applications. SIGARCH Com-
put. Archit. News, 42(1):67–80, February 2014.

67. Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-
sealed data: A new abstraction for building trusted cloud services. In 21st USENIX
Security Symposium, pages 175–188, 2012.

68. Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data an-
alytics in the cloud. In IEEE S& P, 2015.

69. Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A fine-grained attes-
tation service for secure distributed systems. In S&P, 2005.

70. Elaine Shi, Fan Zhang, Rafael Pass, Srini Devadas, Dawn Song, and Chang Liu.
Systematization of knowledge: Trusted hardware: Life, the composable universe,
and everything. Manuscript, 2015.

71. Sean W. Smith and Vernon Austel. Trusting trusted hardware: Towards a formal
model for programmable secure coprocessors. In Proceedings of the 3rd Conference
on USENIX Workshop on Electronic Commerce - Volume 3, WOEC’98, 1998.

72. G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. Aegis: architecture for tamper-evident and tamper-resistant processing.

29

In Proceedings of the 17th annual international conference on Supercomputing,
pages 160–171. ACM, 2003.

73. G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. Aegis: architecture for tamper-evident and tamper-resistant processing.
In International conference on Supercomputing, ICS ’03, pages 160–171, 2003.

74. Mike Szczys. TPM crytography cracked. http://hackaday.com/2010/02/09/

tpm-crytography-cracked/.
75. David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,

John Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. SIGOPS Oper. Syst. Rev., 34(5):168–177, November 2000.

76. Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763,
August 1984.

77. Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine
Shi. Sealed-glass proofs: Using transparent enclaves to prove and sell knowledge.
Cryptology ePrint Archive, Report 2016/635, 2016. http://eprint.iacr.org/

2016/635.
78. Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:

Deterministic side channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy, 2015.

79. Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware
design language for timing-sensitive information-flow security. In ASPLOS, 2015.

80. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier:
An authenticated data feed for smart contracts. In ACM CCS, 2016.

81. Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: an infrastructure for
efficiently protecting information leakage on the address bus. SIGARCH Comput.
Archit. News, 32(5):72–84, October 2004.

30

http://hackaday.com/2010/02/09/tpm-crytography-cracked/
http://hackaday.com/2010/02/09/tpm-crytography-cracked/
http://eprint.iacr.org/2016/635
http://eprint.iacr.org/2016/635

Appendices

Formal Definitions, Constructions,
and Proofs

31

Gatt[Σ, reg]

// initialization:
On initialize: (mpk,msk) := Σ.KeyGen(1λ), T = ∅

// public query interface:
On receive∗ getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:
On receive∗ install(idx , prog) from some P ∈ reg:
if P is honest, assert idx = sid

generate nonce eid ∈ {0, 1}λ, store T [eid ,P] := (idx , prog,0), send eid to P

// local interface — resume an enclave:
On receive∗ resume(eid , inp) from some P ∈ reg:
let (idx , prog,mem) := T [eid ,P], abort if not found
let (outp,mem) := prog(inp,mem), update T [eid ,P] := (idx , prog,mem)
let σ := Σ.Sigmsk(idx , eid , prog, outp), and send (outp, σ) to P

Fig. 4: A global functionality modeling an SGX-like secure processor.
(Copy of Figure 1 reproduced here for convenience.) Blue (and starred∗) ac-
tivation points denote reentrant activation points. Green activation points are
executed at most once. The enclave program prog may be probabilistic and this
is important for privacy-preserving applications. Enclave program outputs are
included in an anonymous attestation σ. For honest parties, the functionality
verifies that installed enclaves are parametrized by the session id sid of the
current protocol instance.

4 Formal Abstractions for Attested Execution Processors

Notations. We summarize some helpful notations in Table 1.

4.1 Overview

We model all available trusted hardware processors from a given manufacturer
as a single, globally shared functionality, denoted Gatt.

Initialization. Upon initialization, the manufacturer M chooses a public veri-
fication key and a signing key pair denoted (mpk, msk), for the signature scheme
Σ. Later, all attestations will be signed using msk. We will focus on anonymous
attestation as inspired by Intel SGX [7,59].

The registry. Our idealized trusted hardware functionality Gatt is parametrized
by a signature scheme Σ and a global registry reg which contains the list of
all parties that are equipped with an attested execution processor. Only the

32

Table 1: Notations.

P identifier of a party (potentially equipped with trusted hardware)
M Hardware Manufacturer
reg registry of machines with trusted hardware
prog a program

inp, outp inputs and outputs resp.
mem a program’s memory tape
eid identifier of an enclave (random nonce)
Σ a signature scheme

machines in reg will be able to call enclave operations and produce attestations
under msk.

The registry reg aims to abstract away the manufacturer’s process of register-
ing new machines enabled with trusted hardware. For simplicity, we model it as
a static set. We leave it as future work to support extensions such as revocation.

Public interface. Gatt provides a public interface such that any party is allowed
to query and obtain the public key mpk. Essentially, this models a secure public
key distribution mechanism where the manufacturer can distribute a trusted
global public key to all users.

We note that instead of providing a public key, in practice Intel’s SGX offers
an online service called Intel Attestation Service (IAS) to allow parties to verify
attestations — in light of this, we can alternatively consider that our Gatt offers
an additional attestation verification entry point. This detail is inconsequential
to our results, since all our protocols do not require verification of attestations
inside the enclave.

Local interfaces. A local interface describes the process where a platform
P interacts with its local trusted processor. To do this, the platform P must
be equipped with a processor manufactured by M, i.e., it must appear in the
registry reg. Correspondingly, when a machine P calls an “install” instruction
to Gatt, Gatt asserts that P is in the registry reg. This also models the fact that
for a remote party to interact with P’s trusted processor, all commands have to
be passed through the intermediary P. The enclave installation process (e.g., as
defined in Intel’s SGX [7,51]) is abstracted into two types of invocations in our
formalism:

– Installation. Enclave installation establishes a software enclave with program
prog, linked to some identifier idx . The functionality enforces that honest
hosts provide the session identifier of the current protocol instance as idx . We
discuss and justify this technical condition in more detail in Section 4.2. Gatt
further generates a random identifier (or nonce) eid for each installed enclave,
which can later be used to identify the enclave upon resume. Finally, Gatt
returns the generated enclave identifier eid to the caller.

– Stateful resume. An installed enclave can be resumed multiple times carrying
state across these invocations. Each invocation identifies the enclave to be

33

resumed by its unique eid . The enclave program prog is then run over the given
input, to produce some output (together with an updated memory mem). The
enclave then signs an attestation, attesting to the fact that the enclave with
session identifier idx and enclave identifier eid was installed with a program
prog, which was then executed on some input to produce outp. Note that the
program’s input is not included in the software attestation. This is without
loss of generality, as prog may always include its inputs as part of its outputs
outp to be signed.

4.2 Modeling Choices and Discussions

The enclave identifier. Each enclave has a unique identifier denoted eid . The
role of the enclave identifier eid is simply to link multiple attestations produced
by an enclave to a unique identifier. As we will see, this linkability property is
crucial in many protocols, to provide “remote parties” (i.e., parties other than
the host that installed the enclave) with the insurance that they are interacting
with the same installed enclave program throughout a protocol execution.

Some trusted hardware platforms such as SGX assign a new identifier to
each enclave. However, the uniqueness of these identifiers is not guaranteed [33].
A better approach, actually advocated by SGX’s design guidelines [1], is for
the installed enclave program to generate a cryptographic nonce by means of
a trusted random number generator. This nonce, which acts as what we call
an “enclave identifier”, can then be included in every attestation produced by
the enclave program. In this case, we consider the enclave program wrapper that
generates the nonce part of our trusted computing base (TCB), and Gatt captures
not only the hardware TCB but additionally the minimal software TCB needed
as well.

Interactions between the environment and Gatt. As in the standard UC
framework, we assume that the environment Z invokes each protocol instance
with a unique session identifier denoted sid .

Recall that Gatt is a global functionality following the GUC paradigm [22].
We assume that the environment Z can access Gatt in the following ways:

– Acting as a corrupt party;
– Acting as an honest party but only for non-challenge protocol instances. For

example, the environment Z can access Gatt through rogue protocols running
on honest parties — however, by assumption these rogue protocols must have
session identifiers different from the challenge sid .

Because of these assumptions and also due to the way Gatt is defined, we
make the following “non-interference” observations:

– The environment Z cannot install an enclave with the challenge sid without
going through A;

– The environment Z cannot access any enclave installed by a corrupt party
without going through A;

34

– The environment Z cannot access enclaves honest parties install during the
challenge protocol instance; and

– A cannot access any enclave Z installed acting as an honest party (i.e., calls
that did not go through A).

Additional assumptions. We additionally assume that honest parties always
invoke Gatt.install where idx is set to the correct sid corresponding to the
current protocol instance. In practice, this check could be performed by an extra
software wrapper, that all honest parties (in all protocols) use to interact with
their trusted hardware platform. As such, our idealized Gatt functionality models
not only the trusted hardware platform per se, but the full “trusted computing
base” (TCB) used by honest parties. However, we allow the adversary to invoke
Gatt.install on any idx that may not correspond to the current session identifier.

4.3 A Few Useful Observations

At this point, we make a few useful observations about our Gatt functionality.

Warmup: client-server outsourcing. First, observe that the enclave program
prog and all inputs inp are observable by the platform P that owns the secure
processor, since P must be an intermediary in all interactions with its local
secure processor.

Although at first glance, it might seem that the enclave program does not
retain any secrets from P, we point out that this is not true: specifically the
enclave program prog may be randomized. It can generate a random key and
perform a key exchange with a remote client. In this way, a remote client can
establish a secure channel with the enclave such that the intermediary P cannot
eavesdrop on or tamper with the communication. In fact, in Appendix B, as a
warmup exercise, we formalize this simple application referred to as outsourcing,
where an honest client outsources data and computation to a remote server
equipped with a secure processor.

Gatt does not give authenticated channels. Although Gatt allows remote par-
ties to check an attestation an be convinced that it was produced by a program
running in an installed enclave, it does not allow remote parties to authenticate
each other.

Fact 1 The functionality Fauth cannot be realized in the Gatt-hybrid model, for
networks of at least two parties.

It is known that the ideal authenticated channels functionality Fauth is im-
possible to realize in the “plain” UC model [21]. This impossibility result, and
its proof, remain valid in the Gatt-hybrid model, as an adversary that corrupts
a party P ∈ reg can simulate any messages issued by another party.

35

5 Stateful Obfuscation from Gatt

As is well-known by the cryptography community, trusted hardware can allow
us to circumvent known theoretical impossibilities [15, 31, 36, 37, 45, 48]. For ex-
ample, virtual blackbox obfuscation is known to be impossible in a plain model
with standard assumptions [11]. However, prior work show that virtual blackbox
obfuscation may be realized from even stateless trusted hardware tokens [48].

We show that a trusted hardware functionality such as Gatt allows us to realize
powerful primitives that would otherwise not be possible with stateless trusted
hardware (and thus would not be possible to realize with program obfuscation).

Stateful obfuscation and motivating application. To do this, we will for-
mally define a primitive called stateful obfuscation. The best way to understand
stateful obfuscation is to imagine the following application: suppose that a hospi-
tal has a differentially private data analytics program that makes queries over a
medical database consisting of many users’ records. The medical data is privacy
sensitive, and moreover the data analytics algorithm is proprietary. Therefore
the hospital obfuscates the program as well as the data prior to distribution (in
this case, consider the union of the program and the data as the program to
be obfuscated). As users make queries to the program, the privacy budget gets
consumed. Therefore, the program should keep track of the remaining privacy
budget and when the budget depletes, the program should output ⊥ upon any
new queries. Traditional notions of program obfuscation, even simulation-secure
definitions, are unable to support this application since the obfuscated program
cannot keep state, and thus is always vulnerable to a rewinding attack.

Summary of results. Informally, in this section, we will show two results:

1. Stateful obfuscation cannot be realized from stateless hardware. Since previ-
ous works have shown that one can build program obfuscation from stateless
hardware, this also rules out building stateful obfuscation from standard no-
tions of program obfuscation.

2. We show that there exists a protocol that realizes stateful obfuscation from
Gatt.

5.1 Formal Definitions

We now formally define stateful obfuscation — see Figure 5. Our formal defi-
nition of stateful obfuscation involves a client C and a server S. The client and
the server may perform an interactive setup at the end of which the server S
obtains an obfuscated version of the program. Only the setup phase can be inter-
active: later during the evaluation phase, the server S should be able to evaluate
the obfuscated program on its own without the client’s help — a property re-
ferred to as “non-interactive evaluation”. Our notion of stateful obfuscation is
also designated-receiver (in this case the server is the receiver), in the sense that
the server S cannot pass the obfuscated program around such that they can
be evaluated by other parties. The choice of designated-receiver is in some sense

36

Fstatefulobf[sid , C,S]

// obfuscate a function f :
On receive (“obfuscate”, f) from C:

notify S, A of |f | and store (f, st := ⊥)
send a public delayed output “okay” to C

// evaluate with input x:
On receive∗ (“compute”, x) from S:

assert that (f, st) is stored
let (y, st′) := f(x, st), let st := st′ and send y to S

Fig. 5: The ideal stateful obfuscation functionality.

inevitable for stateful obfuscation, since if the obfuscated program can be passed
around in an unrestricted manner, a rewinding attack is always possible.

Definition 1 (Stateful obfuscation). A G-hybrid protocol π between a client
C and a server S is said to be a stateful obfuscation scheme if the following holds:

– Security. π securely realizes Fstatefulobf when the client C is honest and the
server S is possibly corrupt.

– Non-interactive evaluation. On input inp from the environment Z, the protocol
for S to evaluate outp may only invoke S and G but not C.

A functionality G possibly representing hardware tokens is said to be stateless,
if there is a probabilistic polynomial-time function g, such that whenever party
P sends message m to G, G replies with g(m,P). In other words, G evaluates a
fixed probabilistic polynomial-time function and does not store state.

5.2 Impossibility in the Standard Model or with Stateless Tokens

Theorem 9 (Impossibility of stateful obfuscation from stateless
trusted hardware). If G is stateless, then no G-hybrid protocol (absent other
functionalities) can realize stateful obfuscation.

On the other hand, it is not hard to see that (designated-receiver) virtual-
blackbox obfuscation can be realized from stateless trusted hardware.

Proof. Imagine that st is a counter initialized to 0 by the honest client. Let

s
$←Zp be a randomly chosen secret where p is a Ω(λ)-bit prime. Let Fs denote

a (n, t)-Shamir secret sharing polynomial with the threshold t and encoding
the secret s. In other words, Fs ∈ Fp[x] is a random polynomial of degree t− 1
whose 0-th coefficient encodes the secret s. Suppose progs is the stateful program
that outputs Fs(inp) upon the i-th invocation if i ≤ t; and outputs ⊥ upon
further invocations. More formally, progs(st, inp) computes the following stateful
function:

37

If st ≥ t, output (st + 1,⊥); else output (st + 1, Fs(inp))

For the sake of contradiction, suppose there exists a stateful obfuscation
scheme π in the G-hybrid world (that does not call other functionalities). By
definition, π is a G-hybrid world protocol, such that when the environment Z
inputs inp to S, S interacts only with G but not C before outputting an answer.
Suppose that in some real-world execution of π, C receives input progs from the

environment Z, where s
$←Zp is chosen at random by Z. For π to securely realize

Fstatefulobf, when S first receives any input inp ∈ Zp from Z, it performs some
interactions with G, and except with negligible probability, it outputs Fs(inp)
to Z. Now the adversary S can simply rewind and rerun the honest evaluation
protocol using t+1 different inputs inp1, . . . , inpt+1. Since the evaluation protocol
interacts only with G and G is stateless, it is not hard to see that with all but
negligible probability, A must output to Z the correct Fs(inpi) upon the i-th
evaluation. Clearly in the real-world execution, A can output the secret s with
all but negligible probability, whereas in an ideal-world execution, A cannot
output s except with negligible probability. Hence the protocol π cannot realize
Fstatefulobf.

5.3 Construction from Attested Execution Processors

We construct a protocol Protstatefulobf that securely realizes Fstatefulobf (Fig-
ure 6). For concreteness and ease of exposition, we will leverage Diffie-Hellman
for key exchange and an authenticated encryption scheme. It is not hard to
modify our scheme for any secure key exchange protocol (possibly with more
rounds). Further, notice that the existence of secure key exchange protocols im-
ply the existence of authenticated encryption.

We further make the simplifying assumption (which does not impact our
previous impossibility result) that the length of the computed function f , its
input x, and output y are of fixed, publically known lengths.

Theorem 10 (Stateful obfuscation from Gatt). Assume that the signature
scheme Σ is existentially unforgeable under chosen message attacks, the De-
cisional Diffie-Hellman assumption holds in the algebraic group adopted, the
authenticated encryption scheme AE is perfectly correct and satisfies the stan-
dard notions of INT-CTXT and semantic security. Then, the Gatt-hybrid protocol
Protstatefulobf UC-realizes Fstatefulobf when the client C is honest, and that the
server S is corrupt.

Proof. We focus on the case where the server is corrupt; the case where both
parties are honest is trivial as all communications occur over secret channels.

Ideal-world simulator Sim. We first describe an ideal-world simulator Sim,
and then show that no p.p.t. environment Z can distinguish the ideal-world and
real-world executions.

– Unless noted otherwise below, any communication between Z and A or be-
tween A and Gatt is simply forwarded by Sim.

38

progstatefulobf

On input (“keyex”, ga):

let b←$Zp, and store sk := (ga)b

return (ga, gb)

On input (“obfuscate”, ct):
let f := AE.Decsk(ct)
assert decryption success, store (f, st := ⊥) and return “okay”

On input∗ (“compute”, x, y′):
assert that (f, st) is stored
if y′ 6= ⊥ return y′

else let (y, st′) := f(x, st), let st := st′ and return y

Protstatefulobf[sid , C,S]

Server S:

On receive (“keyex”, ga) from C:
let eid := Gatt.install(sid , progstatefulobf)
let ((ga, gb), σ) := Gatt.resume(eid , (“keyex”, ga)) and send (eid , gb, σ) to C

On receive (“obfuscate”, ct) from C:
let “okay” := Gatt.resume(eid , (“obfuscate”, ct)) and send “okay” to C

On receive∗ (“compute”, x) from Z:
let y := Gatt.resume(eid , (“compute”, x,⊥)) and output y

Client C:

On initialize:
let a←$Zp, mpk := Gatt.getpk() and send (“keyex”, ga) to S
wait to recv (eid , gb, σ) from S
assert Σ.Vfmpk((sid , eid , progstatefulobf , (g

a, gb)), σ) and let sk := (gb)a

On input (“obfuscate”, f) from Z:
let ct := AE.Encsk(f) and send (“obfuscate”, ct) to S, wait to receive “okay”

Fig. 6: A protocol Protstatefulobf that realizes the stateful obfuscation func-
tionality Fstatefulobf. The public group parameters (g, p) are hardcoded into
progstatefulobf .

39

– The simulator Sim starts by emulating the setup of a secure channel between
C and Gatt. Sim sends ga to A (that controls the corrupted S) for a randomly
chosen a.

– When Sim receives a tuple (eid , gb, σ) from A, Sim aborts outputting sig-
failure if σ would be validated by a honest C, yet Sim has not recorded the
following A ⇔ Gatt communication:

• eid := Gatt.install(sid , progstatefulobf);

• ((ga, gb), σ) := Gatt.resume(eid , (“keyex”, ga))

Else, Sim computes sk = gab.
– When Sim receives |f | from Fstatefulobf, it chooses a canonical function f0 and

sends (“obfuscate”, ct := AE.Encsk(f0)) to A.
– If Sim receives a message “okay” fromA, it allows Fstatefulobf to deliver “okay”

to C in the ideal world.
– If Amakes a Gatt.resume(eid , (“compute”, ,)) call and Sim has not observed

a Gatt.resume(eid , (“obfuscate”, ct)) call, where ct was the ciphertext sent
previously to A, Sim forwards the message to Gatt and aborts with output
authenc-failure if Gatt returns an output other than ⊥.

– If A makes a Gatt.resume(eid , (“compute”, x,⊥)) call and a correct
“obfuscate” call was previously observed, Sim sends (“compute”, x) to
Fstatefulobf and receives y. It then replaces the message to Gatt by
(“compute”,⊥, y), and forwards the response (y, σ) to A.

– If A makes a Gatt.resume(eid , (“compute”, , y′)) call (where y′ 6= ⊥) and a
correct “obfuscate” call was previously observed, Sim simply forwards the
message to Gatt and returns the response (y′, σ) to A.

We now prove the indistinguishability of the real-world and ideal-world exe-
cutions through a sequence of hybrids.

Claim. Assume that the signature scheme Σ is secure, except with negligible
probability, the simulated execution does not abort outputting sig-failure.

Proof. Straightforward reduction to the security of the digital signature scheme
Σ.

Hybrid 1. Identical to the simulated execution, but the secret key sk = gab

shared between C and Gatt is replaced with a random element from the appro-
priate domain.

Claim. Assume that the DDH assumption holds, then Hybrid 1 is computation-
ally indistinguishable from the simulated execution.

Proof. Straightforward by reduction to the DDH assumption.

Claim. Assume that AE satisfies INT-CTXT security. It holds that in Hybrid 1,
authenc-failure does not happen except with negligible probability.

40

Proof. Straightforward by reduction to the INT-CTXT security of authenticated
encryption. If A never makes a Gatt.resume(eid , (“obfuscate”, ct)) call where ct
is the ciphertext previously sent by Sim, then with all but negligible probabil-
ity, progstatefulobf will not have stored some (f, st) and will return ⊥ on any
“compute” call.

Hybrid 2. Instead of sending ct := AE.Encsk(f0) to A, we now send ct :=
AE.Encsk(f) where f is the honest client’s true input.

Claim. Assume that AE is semantically secure, Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof. Straightforward reduction to the semantic security of authenticated en-
cryption.

Hybrid 3. Now instead of injecting the true output y into the “compute” mes-
sage sent by A to Gatt, the message is simply forwarded to Gatt and the output
returned to A.

Claim. Hybrid 3 is identically distributed to Hybrid 2.

Hybrid 4. Now instead of using a random key between C and Gatt, we switch
back to using the real key gab.

Claim. Assume that the DDH assumption holds, then Hybrid 4 is computation-
ally indistinguishable from Hybrid 3.

Proof. Straightforward by reduction to the DDH assumption.

Finally, observe that conditioned on the simulator not aborting and AE being
perfectly correct, Hybrid 4 is identically distributed as the real execution.

6 Composable 2-Party Computation

6.1 Lower Bound

We first consider the feasibility of realizing universally composable multi-party
computation when not all parties have a secure processor. We show a negative
result.

Theorem 11 (Impossibility of UC-secure MPC when not all parties
have a secure processor). If at least one party P is not equipped with trusted
hardware (i.e., P /∈ reg), it is impossible to UC-realize MPC in the Gatt-hybrid
model, even with pairwise authenticated channels.

41

Proof. To show that it is impossible to realize general MPC, we show that one
particular functionality, namely two-party commitments, cannot be realized. We
follow the same ideas as in the proof of impossibility of realizing commitments
in the plain authenticated model (i.e., without Gatt) from [23]. We consider a
commitment between two parties, the committer Pi and the receiver Pj , using
some protocol π. Without loss of generality, we will assume that Pi 6= reg, i.e.,
that the committer is not equipped with trusted hardware.

The proof now proceeds identically to the one in [23]: Consider a real-world
adversary A that corrupts the committer Pi. This adversary is a “dummy ad-
versary” that simply forwards messages between Pi and the environment Z.

Now, Z picks a bit b at random and honestly follows Pi’s part of the protocol
π to commit to b. If the protocol π requires Pi to make any “install” or “resume”
calls to Gatt, Z simply ignores those calls (as Pi /∈ reg). Once Pj acknowledges
receipt of the commitment, Z instructs A to perform Pi’s part of the protocol π
to decommit to b. Again, A ignores any (unsuccessful) calls to Gatt proscribed by
π. Finally, when Pj outputs (“open”, b′), Z outputs 1 if b = b′ and 0 otherwise.

As Pj outputs a receipt before the decommitment phase starts, an ideal-world
simulator Sim for the pair (A,Z) must send some value b′ to Fcom, before learning
the value of the bit b. However, for the simulation to be faithful, Sim’s value b′

should be equal to the value b chosen by Z, which contradicts commitment
secrecy.

Note that this lower bound proof would fail assuming all nodes have access to
trusted hardware. In this case, the simulator will be able to trivially extract any
communication between a corrupt party and Gatt, as this communication cannot
be emulated by the environment. This extraction capability is what gives the
simulator “extra-power” over the real-world adversary. The above lower bound
proof would fail since the simulator is in some sense more powerful than the
real-world receiver.

6.2 Composable 2-Party Computation with Omnipresent Secure
Processors

We present a protocol for realizing composable 2-party computation assuming
that both parties have a secure processor. For concreteness and ease of exposi-
tion, our protocol makes use of Decisional Diffie-Hellman (DDH) and authenti-
cated encryption. It is easy to see that our construction and proofs extend in the
most natural manner to any secure key exchange protocol (possibly with more
rounds). Further, since the existence of authenticated encryption and digital sig-
natures is implied by that of key exchange, it suffices to assume key exchange
for theoretical feasibility.

For clarity, we first present a simple version where both parties’ enclaves
perform program dependent computation in Figure 7 — this protocol is com-
pletely symmetric between the two parties and therefore easier to explain. We
will later describe how to easily modify the protocol such that only one party’s
enclave needs to perform program-dependent evaluation. For simplicity sake, we

42

prog2pc[f,P0,P1, b]

On input (“keyex”, inpb, w): y
$←Zp, store w, and return gy

On input (“send”, gx, (w′, v′)):
assert that “commit” has been called
sk := (gx)y, ct := AE.Encsk(inpb, w

′, v′), return ct

On input (“compute”, ct):
assert that “send” has been called and ct not seen
(inp1−b, w

′, v) := AE.Decsk(ct), assert that decryption succeeds
if w′ = w, return v; else return outp := f(inp0, inp1)

Prot2pc[sid , f,P0,P1, b]

On input inpb from Z:
eid := Gatt.install(sid , prog2pc[f,P0,P1, b])
henceforth denote Gatt.resume(·) := Gatt.resume(eid , ·)
(gy, σ) := Gatt.resume(“keyex”, inpb, w) where w

$←{0, 1}λ
send (eid , gy, σ) to P1−b, await (eid ′, gx, σ′)
assert Σ.Vermpk((sid , eid

′, prog2pc[f,P0,P1, 1− b], gx, σ′)
(ct,) := Gatt.resume(“send”, gx, (inpb,⊥,⊥)), send ct to P1−b, await ct′

(outp,) := Gatt.resume(“compute”, ct′), output outp

Fig. 7: Composable 2-party computation: both server and client have
secure processors. (Copy of Figure 2 reproduced here for convenience.) The
group parameters (g, p) are hardcoded into prog2pc.

also assume that parties’ inputs and the function output are of a fixed (apriori
known) length.

We first explain the natural parts of the protocol described in Figure 7.
Basically, both parties’ enclaves establish a secure channel and send the parties’
respective inputs to the other enclave. The two enclaves then each performs the
evaluation, and each party queries its local enclave for the outcome.

We next explain several technicalities reflected in the construction. First,
when each party submits its input to its local enclave, it also submits a high-
entropy trapdoor w. This trapdoor is coupled with a backdoor in the enclave
program: during the “compute” phase, if the authenticated encryption ciphertext
ct from the other party decrypts to a pair (w′, v) such that w′ = w, the enclave
will sign and output v rather than the outcome of the computation. We note that
after a party submits the trapdoor w to its local enclave, the trapdoor is never
used again in an honest protocol execution. Specifically, an honest party should
always keep the trapdoor w private. On the surface, this trapdoor and backdoor
combination seem superfluous — but in our simulation proof, we critically rely
on them to allow the simulator to equivocate. Specifically, when the corrupt
party submits its input and trapdoor to the enclave, the simulator captures this
message and extracts both the corrupt party’s input and the trapdoor. When the

43

simulator obtains output outp∗ from the ideal functionality F2pc, it will leverage
knowledge of the corrupt party’s trapdoor to program the enclave’s output to
outp∗.

Theorem 12 (2-party computation from Gatt with omnipresent secure
processors). Assume that the DDH assumption holds, the authenticated encryp-
tion scheme is perfectly correct, semantically secure, and INT-CTXT secure, and
Σ is a secure signature scheme, the protocol described in Figure 7 UC-realizes
Ff2pc.

Proof. If both parties are honest, it is not hard to see that we can construct a
simulation such that the environment cannot distinguish the real-world execution
and the simulated execution, as all interaction between parties are over secure
channels.

Below we focus on the case when one party is corrupt. Without loss of general-
ity, we will henceforth assume that P1 is corrupt since the protocol is symmetric.
We now describe the simulator construction Sim.

– Unless otherwise noted later, Sim passes through communications between
P1 and Gatt. The simulator passes through all communications between P1

and Z.
– The simulator Sim calls eid0 := Gatt.install(sid , prog2pc[f,P0,P1, 0]), and

(gy, σ) := Gatt.resume(eid0, “keyex”,⊥, w) for a randomly chosen w, and
sends (gy, σ) to P1.

– The simulator Sim waits to receive the first message (eid1, g
x, σ′) from P1.

Henceforth we refer to (eid0, eid1) as the challenge eids.
If the tuple (gx, σ′) was not the result of a previous query
Gatt.resume(eid1, “keyex”,) for the challenge eid1 either from Z or P1,
but σ′ verifies by the honest protocol, abort outputting sig-failure. Else let
Gatt.resume(eid1, “keyex”, inp1, w

∗) be the first query of such form, Sim ex-
tracts and remembers inp1 and w∗. Recall that if the Z made this call, Sim
can observe all communications between Z and Gatt as well.

– Sim now sends inp1 to the ideal functionality Ff2pc, and obtains from Ff2pc the
output outp∗. Sim calls (ct0,) := Gatt.resume(eid0,⊥, w∗, outp), and sends
ct0 to P1.

– When Sim hears the first query of the form ct1 :=
Gatt.resume(eid1, “send”, , w′, v′) for the challenge eid1, either from Z
or P1. If w′ = w where w was chosen by Sim earlier, abort outputting
predict-failure. Otherwise, Sim remembers ct1.

– Sim calls (ct,) := Gatt.resume(eid0, “send”, gx, (⊥, w∗, outp)) and sends ct to
P1.

– Sim waits to receive ct′ from P1. If ct′ 6= ct1 where ct1 is defined earlier,
but Gatt.resume(eid0, “compute”, ct′) did not abort outputting ⊥, Sim aborts

outputting authenc-failure. Otherwise Sim tells Ff2pc to release the outcome
to P0.

Claim. Assume that the signature scheme is secure, except with negligible prob-
ability, the simulated execution does not abort with sig-failure.

44

Proof. Straightforward reduction to the security of digital signatures.

Claim. Except with negligible probability, the simulated execution does not
abort with predict-failure.

Proof. Straightforward. Observe that Sim never sends honest party’s w value or
any information that depends on it to the adversary during the simulation, and
moreover w has high entropy.

Hybrid 1. Identical to the simulated execution, but replace the challenge sk =
gxy with a random term from the appropriate domain.

Claim. Assume that the DDH assumption holds, then Hybrid 1 is computation-
ally indistinguishable from the simulated execution.

Proof. Straightforward by reduction to the DDH assumption.

Claim. Assume that AE satisfies INT-CTXT security. It holds that in Hybrid 1,
authenc-failure does not happen except with negligible probability.

Proof. Straightforward by reduction to the INT-CTXT security of authenticated
encryption.

Hybrid 2. Instead of calling Gatt.resume(eid0, “keyex”,0, w), now call
Gatt.resume(eid0, “keyex”, inp0, w) where inp0 is the honest party’s true input.
This means that later, the simulator will send an AE ciphertext encoding the
honest party’s true input instead of the 0 input.

Claim. Assume that AE is semantically secure, Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof. Straightforward reduction to the semantic security of authenticated en-
cryption.

Hybrid 3. Now instead of using a random sk, switch back to using the real gxy.

Claim. Assume that the DDH assumption holds, then Hybrid 3 is computation-
ally indistinguishable from Hybrid 2.

Proof. Straightforward by reduction to the DDH assumption.

Claim. Assume that AE is perfectly correct. Conditioned on simulator not abort-
ing, Hybrid 3 identically distributed as the real execution.

Proof. Straightforward. Observe that for every execution trace of Hybrid 3, the
only reason why the ideal-world honest party would output differently than what
the real-world honest party would have output is if the authenticated encryption
scheme decrypted the honest party’s input incorrectly.

45

A more efficient variant. It is not hard to see that our protocol described in
Figure 7 can be easily adapted such that only one enclave must perform program-
dependent evaluation. Specifically, one of the parties need not send “compute”
to its local enclave, but instead wait for the other party to send a signed output
back (over a secure channel). It is not hard to see that this modification is
inconsequential to our proofs presented above. The above simple idea works when
both parties have identical outputs. It is also not difficult to modify the protocol
when both parties have different outputs. In particular, one party’s enclave can
encrypt the other party’s result with authenticated encryption using the key
that was established earlier. The other party’s enclave can decrypt this result,
and output it to its owner. Since this is also a straightforward modification, we
omit the formal description and proofs.

7 Composable Multi-Party Computation with a Single
Secure Processor and an Augmented Global CRS

Earlier we showed that even when a single party does not have a secure pro-
cessor, universally composable MPC is unfortunately not possible in the Gatt
hybrid world. In this section, we explore how to introduce minimal global setup
assumptions to circumvent this impossibility.

For concreteness and ease of exposition, our protocols in this section will
make use of a public-key encryption scheme (for key exchange), a non-interactive
witness indistinguishable proof system, a digital signature scheme, and authen-
ticated encryption. It is not hard to observe that our protocol and proofs extend
naturally to any secure key exchange protocol (possibly with more rounds), and
any interactive witness indistinguishable proof system. Since the existence of
secure key exchange implies the existence of interactive witness indistinguish-
able proof systems, authenticated encryption, and digital signatures, secure key
exchange protocols suffice for theoretical feasibility.

7.1 Augmented Global CRS

We will leverage the Gacrs global functionality described in Figure 8. Gacrs was
first proposed by Canetti et al. [22].

We briefly explain Gacrs, also referred to as an augmented global common
reference string. In particular, Gacrs provides a public common reference string
that is honestly generated. Honest parties never have to query Gacrs for any
additional information — in this sense Gacrs requires only minimal additions
atop a standard global common reference string. On the other hand, Gacrs leaves
a backdoor for the adversary, such that the adversary can obtain identity keys
pertaining to their party identifiers. Later, our protocol will demonstrate how
the simulator can leverage corrupt parties’ identity keys to perform extraction
and equivocation, two key elements of protocol composition proofs.

More concretely, a party’s identity key is a signature of its party identifier un-
der a master signing key. This signature can be verified with Gacrs.vk. Henceforth

46

Gacrs

On initialize: (epk, esk)
$←PKE.Gen(1λ), (ssk, vk)

$←Σ.Gen(1λ), crs← NIWI.Gen(1λ)
On receive∗“crs” from P: return Gacrs.mpk := (epk, vk, crs)
On receive∗“idk” from P: assert P is corrupt, and return Σ.Signssk(P)

Fig. 8: Global augmented common reference string. Generates a pub-
lic encryption key pair, a signing key pair, and a common reference string for
the witness indistinguishable proof system. Upon query from a (corrupt) party,
returns a signature on the party’s identifier henceforth called the identity key.

we use the following notation

check(Gacrs.mpk,P, idk)

to denote the following: first, parse Gacrs.mpk := (, vk,); next call
Σ.Vervk(P, idk). In other words, use the signature verification key inside
Gacrs.mpk to verify whether idk is a valid signature on the party identifier P.

Additionally, Gacrs also generates a public encryption key denoted epk, and
a global common reference string crs for the proof system that we will adopt.

7.2 NP Languages Adopted in the Protocol

Our protocol relies on witness indistinguishable proofs whose formal definitions
are presented in Appendix A.4. For ease of exposition, we define non-interactive
witness indistinguishable proofs with a global common reference string — but it
is not hard to see that our protocol and proofs naturally extend to interactive
witness indistinguishable proofs (without a common reference string).

We define the NP language we will rely on and related shorthands.

Language for proving signatures from secure processors. Let a statement
be of the form stmt := (sid , eid , C,mpk,Gacrs.mpk,P,msg) where Gacrs.mpk :=
(epk, vk, crs) and a witness be of the form w := (r, σ, idk[P]). The NP relation is
defined as below:

∃(msg, r, σ, idk[P]) s.t. C = PKE.Encepk((σ, idk[P]), r) and(
Vermpk(sid , eid , progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn],msg, σ) or check(vk,P, idk[P]) = 1

)
More informally, the statement basically asserts that the plaintext encrypted

under C either contains a valid signature σ for the message msg signed by a
secure processor, or it contains P’s identity key idk[P].

Abbreviated notations for zero-knowledge proofs. Henceforth we will use
the following shorthand, omitting public parameters that are implicit from the
context. We define

NIWI.Prove((P,msg, C), (r, σ, idk[P])) :=
NIWI.Prove(crs, (sid , eid , C,mpk,Gacrs.mpk,P,msg), (r, σ, idk[P]))

Further, given (P,msg, σ), we define the subroutine ψ(P,msg, σ) as follows:

47

– Generate r at random, let C := PKE.Encepk((σ,⊥), r).
– Let π := NIWI.Prove((P,msg, C), (r, σ,⊥)).
– We now define

ψ(P,msg, σ) := (msg, C, π)

In other words, ψ(P,msg, σ) transforms an attestation σ to a witness-
indistinguishable proof, under appropriate public parameters, of the fact that
either C encrypts a valid signature on msg, or it encrypts P’s identity key.

7.3 Detailed Protocol

We present our detailed protocol in Figure 9. The key insight behind the protocol
is that the enclave program is parametrized by Gacrs.mpk. In the simulation, the
simulator will obtain corrupt parties’ identity keys from Gacrs.mpk. We embed
backdoors in the enclave program named “extract” and “program”, such that
when the simulator provides corrupt parties’ identity keys, the enclave program
will 1) leak corrupt parties’ inputs to the simulator; and 2) let the simulator
program corrupt parties’ outputs. We stress that these backdoors do not harm
honest parties’ security because honest parties never even query Gacrs for their
identity keys.

Otherwise, the protocol proceeds in the a natural manner (but with sub-
tleties), where each party encrypts its input to the server’s enclave, additionally
each party encrypts a a secret session key later used to form a secure channel
with the enclave. Through an attestation sent in the response, each party verifies
that the enclave has correctly registered their respective input. If this is indeed
the case, all parties acknowledge the enclave’s eid to each other over an authen-
ticated channel. If all parties confirm that they are talking to the same enclave,
they then send “ok” to the enclave over a secure channel. Upon collecting “ok”
messages from all parties, the enclave proceeds with the evaluation, and finally,
signs and returns the output. One subtlety is that all parties must acknowledge
that they are talking to the same enclave over pairwise authenticated channels
before the enclave can proceed with the evaluation — since otherwise the adver-
sary can simply impersonate one of the parties and supply a malicious input on
behalf of the victim.

Again, for sake of simplicity, we will assume that all parties’ inputs as well
as the computed output are of some fixed predetermined length.

Theorem 13 (MPC from Gatt when a single party has a secure proces-
sor). Assume that the signature scheme is secure, the public-key encryption is
semantically secure and perfectly correct, the proof system satisfies computational
soundness and witness indistinguishability, and that the authenticated encryption
scheme is perfectly correct, semantically secure, and INT-CTXT secure, then the
protocol described in Figure 9 UC-realizes Ffmpc.

Proof. We now prove the above theorem.

Server and some remote parties are corrupt. We construct a simulator as
below.

48

progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn]

On input (“init”): (pk, sk)← PKE.Gen(1λ), return pk

On input (“input”, {cti}i∈[n]):
for i ∈ [n]: (inpi, ki) := PKE.Decsk(cti), return Ω := {cti}i∈[n]

On input (“extract”, {idki}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, vi := inpi, else vi := ⊥, return {vi}i∈[n]

On input (“program”, {idki, ui}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, outpi := ui

On input (“proceed”, {ct′i}i∈[n]):
for i ∈ [n]: assert AE.Decki(ct

′
i) = “ok”

outp∗ := f(inp1, . . . , inpn), return “done”

On input∗ (“output”,Pi):
assert outp∗ has been stored
if outpi has been stored, return (Pi, outpi), else return (Pi, outp∗)

Protmpc[sid , f,S,P1, . . . ,Pn]

Server S:

let eid := Gatt.install(sid , progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn])
henceforth let Gatt.resume(·) := Gatt.resume(eid , ·)
let (pk, σ) := Gatt.resume(“init”), send (eid , ψ(Pi, pk, σ)) to each Pi
for each Pi: await (“input”, cti) from Pi
(Ω, σ) := Gatt.resume(“input”, {cti}i∈[n]), send ψ(Pi, Ω, σ) to each Pi
for each Pi: await (“proceed”, ct′i) from Pi
Gatt.resume(“proceed”, {ct′i}i∈[n])
for each Pi:

(Pi, outpi, σi) := Gatt.resume(“output”,Pi), send ψ(Pi, (Pi, outpi), σi) to Pi

Remote Party Pi:
For ψ := (msg, C, π), let Ver(ψ) := Ver(crs, (sid , eid , C,mpk,Gacrs.mpk,Pi,msg), π)
On input inp from Z:

await (eid , ψ), assert Ver(ψ), parse ψ := (pk,)

k ← {0, 1}λ, ct = PKE.Encpk(inp, k)
send (“input”, ct) to S, await ψ from S, assert Ver(ψ), parse ψ := (Ω,)
assert Ω[i] = ct, send eid to all parties, wait for all parties to ack eid
let ct′ := AE.Enck(“ok”), send (“proceed”, ct′) to S, await ψ, assert Ver(ψ)
parse ψ := ((Pi, outp),), if parse successful: output Deck(outp)

Fig. 9: Composable multi-party computation with a single secure pro-
cessor. (Copy of Figure 3 reproduced here for convenience.) The notation send
denotes messages sent over a secure channel.

49

– Unless otherwise noted, Sim passes through interactions between A and Gatt,
between A and Gacrs, and interactions between A and Z.

– Sim requests Gacrs for all corrupt parties’ identity keys.

– Sim awaits (eid i, ψ) fromA for each honest Pi. At this moment eid i is referred
to as the challenge eid w.r.t. Pi. Note that at this moment, different honest
parties may perceive a different challenge eid .

If ψ := (pk, C, π) verifies w.r.t. Pi but Gatt did not return (pk,) earlier
upon a Gatt.resume(eid , “init”) call, either from Z or A, abort outputting
sig-failure.

– For each honest party Pi, the simulator Sim uses the input inp = 0, chooses
ki at random, and honestly computes cti, and sends the tuple cti to A.

– WhenA sends ψ := (Ω,C, π) for each honest Pi: if ψ verifies w.r.t. Pi, but Sim
did not observe (Ω,) as the outcome of a prior Gatt.resume(eid i, “input”,)
call by either Z or A, where eid i denotes the challenge eid from i’s perspec-
tive, abort outputting sig-failure. Also abort if Ω[i] 6= cti, where (cti was what
Sim sent to Pi (part of A) earlier.

Once an honest party Pi receives such a valid message ψ := (Ω,C, π) from
A, Sim acks eid on behalf of Pi to each corrupt party (sent to A).

– Sim awaits acks on eid from every corrupt party. Abort if the acks are different
or if earlier, honest parties perceived different eids.

– Now the challenge eid is uniquely defined if the simulator did not abort. Now,
we know that (Ω,) is the outcome of a previous Gatt.resume(eid , “input”,)
call observed by Sim. Note that since the enclave program’s “input” entry is
non-reentrant, if the simulation did not abort, it must be the case that all
honest parties received the same Ω.

Sim now calls Gatt.resume(eid , “extract”, {idki}i∈[n]) where for each corrupt
party Pi, idki is set to the identity key Sim obtained from Gacrs earlier, and
for each honest party, it is set to ⊥. Sim now obtains from Gatt the inputs
inpi for each corrupt Pi. Sim sends all corrupt parties’ inputs to Ffmpc if it

has not already done so. Sim obtains the output outp∗ from Ffmpc.

Sim now calls Gatt.resume(eid , “program”, {idki, ui}i∈[n]) where for each cor-
rupt party Pi, idki is set to the identity key Sim obtained from Gacrs earlier,
and ui := outp∗; and for each honest party, the pair is set to (⊥,⊥).

– If A or Z ever sends Gatt.resume(eid , “proceed”, Ω) for the challenge eid , the
simulator checks to see for every honest i, where the ct′ the simulator has sent
A is correctly contained in Ω. If not correctly contained but the Gatt.resume
call did not return ⊥, abort outputting authenc-failure.

– For each honest Pi, Sim awaits ψ := ((Pi, outp), π) from A. If ψ verifies
w.r.t. Pi but Sim did not observe ((Pi, outp),) as the outcome of a prior
Gatt.resume(eid , “output”, i) query for the challenge eid , abort outputting
sig-failure. Otherwise, Sim requests that Ffmpc sends output to party Pi.

– Any time during the simulation, ifA or Z calls Gatt.resume(eid , “program”,)
or Gatt.resume(eid , “extract”,) and provided a valid idki for an honest Pi,
abort outputting idk-failure.

50

Lemma 1. Assume that the signature scheme is secure, the PKE encryption is
perfectly correct, and that NIWI is computationally sound. Then, the simulation
does not abort with sig-failure except with negligible probability.

Proof. If the simulation aborted with sig-failure with non-negligible probabil-
ity, we can leverage the union of A,Z,Sim,Gatt,Gacrs to build a reduction Re
that breaks either the computational soundness of NIWI, or the security of the
signature scheme, assuming that PKE is perfectly correct.

The idea is for Re to generate epk and store esk which is part of the global
common reference string. Now Re runs the experiment with (A,Z), and waits
till sig-failure happens — suppose it happens on the tuple (msg, C, π). At this
moment, Re decrypts C with esk, and obtains a witness (σ, idk[Pi]) where Pi
denotes some honest party. Now there are the following cases:

– If the witness (σ, idk[Pi]) is not a valid witness, Re has broken the computa-
tional soundness of NIWI.

– Else if (σ, idk[Pi]) is a valid witness, then we know that either σ is a valid
signature on msg, or idk[Pi] is a valid identity key for honest party idk[Pi].
In either case, the reduction can forge a new signature on a new message.

Claim. Assume that the signature scheme is secure, then, the simulation does
not abort with idk-failure except with negligible probability.

Proof. By straightforward reduction to signature security.

We prove computational indistinguishability of the real-world and simulated
executions through a sequence of hybrids. By repartitioning of algorithms, let
us now start treating the union of the honest parties, the ideal functionality
Ffmpc, the global functionalities Gatt, Gacrs, and the simulator Sim together as
one Turing Machine.

Hybrid 1. Almost identical to the simulated execution except the following
modifications:

Every time the simulator Sim needs to compute a PKE ciphertext on behalf
of an honest party, instead of encrypting the real authenticated encryption
key k, Sim instead encrypts the authenticated encryption key 0. However,
note that the real authenticated encryption key is still used elsewhere by the
simulator and the enclave program.

Claim. Assume that the public-key encryption scheme PKE is semantically se-
cure, then Hybrid 1 is computationally indistinguishable from Hybrid 1’.

Proof. By straightforward reduction to the semantic security of PKE.

Claim. Assume that AE satisfies INT-CTXT security. Then, in Hybrid 2,
authenc-failure does not happen except with negligible probability.

51

Proof. By straightforward reduction to the INT-CTXT game of AE. Observe
that earlier in the hybrid sequence, the public-key ciphertext no longer encrypts
the authenticated encryption keys, therefore no information is leaked to (A,Z)
about the honest parties authenticated encryption keys.

Hybrid 2. Hybrid 2 is almost identical to Hybrid 1, except the following change:

During a “proceed” call, if all parties authenticated encryption ciphertexts
successfully decrypt, the enclave program will use outp∗ that was returned
earlier by Ffmpc to program outputs for every corrupt party.

Claim. Assume that AE is perfectly correct. Then Hybrid 1 and Hybrid 2 are
identically distributed.

Proof. Straightforward by observing that since we asserted authenc-failure ear-
lier, it must be the case now that for all honest parties’ ct′i, if the enclave program
did not abort on a “proceed” call, A or Z must have correctly invoked the call
with the correct ct′i ciphertexts that the simulator had sent A earlier.

Hybrid 3. Almost identical to Hybrid 2 except the following changes: instead of
encrypting 0 as honest parties inputs with PKE, the simulator Sim now encrypts
the honest parties’ true inputs.

Claim. Assume that PKE is semantically secure. Then Hybrid 3 and Hybrid 2
are computationally indistinguishable.

Proof. By straightforward reduction to the semantic security of PKE.

For the reduction to work, it is important to observe that at this point,
the enclave’s “proceed” call no longer makes use of the decryptions of the PKE
ciphertexts to interact with A (see Hybrid 2). Therefore, the simulation cannot
have accidentally served as a decryption oracle for A — only if this is true can
we build a reduction to semantic security.

Claim. Assume that PKE is perfectly correct. Then, conditioned on simulation
not aborting, Hybrid 3 is identically distributed as the real-world execution.

Proof. Conditioned on the simulation not aborting, observe that the only differ-
ence between Hybrid 3 and the real-world execution is that in Hybrid 3, the outp∗

sent to A is computed by Ffmpc by evaluating f over honest parties’ true inputs
and what Sim extracted of corrupt parties’ inputs which are decrypted from PKE
ciphertexts by the enclave. In the real-world execution, the output sent to A is
computed by the enclave program through evaluting f on the honest parties’ de-
crypted inputs and corrupt parties’ decrypted inputs (both through decryption
PKE ciphertexts). It is not hard to see that if PKE is perfectly correct, then the
two methods result in the same output.

52

Some remote parties are corrupt but server is honest. We construct the
following simulation. Throughout the simulation Sim simulates Gatt, except for
the signing since Sim does not have Gatt’s signing key. However, since Sim knows
the identity keys of corrupt parties, it can use the identity keys as an alternative
witness when replying to A with a zero-knowledge proof.

– Unless otherwise noted, Sim passes through interactions between A and Gacrs,
and interactions between A and Z. In this case, since the corrupt parties do
not have a secure processor, we do not have to consider interactions between
A and Gatt.

– Sim requests Gacrs for all corrupt parties’ identity keys.
– Sim generates a random eid . Sim simulates the enclave program’s “init” entry

point, and generates (pk, sk). For every corrupt party Pi, Sim now constructs
a zero-knowledge proof denoted π vouching for pk, but using Pi’s identity
key as the witness. Sim now sends (eid , pk, π) to A.

– Sim now waits to receive a tuple (“input”, ct) from each corrupt party Pi
controlled by A. Sim simulates the enclave program’s “input” function, as
well as the honest parties’ inputs to the “input” function.
Since Sim knows sk, it can decrypt all corrupt parties’ inputs and send them
to Ffmpc. Sim obtains the outcome outp∗ from Ffmpc.
Again, Sim now constructs a zero-knowledge proof denoted π vouching for
the outcome of this computation denoted Ω, but using Pi’s identity key as
the witness. Sim now sends (Ω, π) to A.

– Sim acts as each honest party and acks eid to each corrupt party. Sim waits
to collect corrupt parties’ eid acks, and aborts if the acks are inconsistent.

– Sim now awaits (“proceed”, ct′) from each corrupt party Pi. Sim now simu-
lates the enclave program’s “proceed” function, as well as the honest parties’
inputs to the “proceed” function. If the “proceed” function did not abort, Sim
now constructs a zero-knowledge proof denoted π vouching for the outcome
(Pi, outpi). It now sends (Pi, outpi, π) to A.

– If A allows S’s messages to be delivered to an honest party Pi (recall that
communication channels are UC-secure channels), Sim tells Ffmpc to release
outcome to Pi.

We now show that the simulated execution and the real execution are com-
putationally indistinguishable. During the hybrid sequences, it helps to think
of the union of Sim, Gatt, Gacrs as a single Turing Machine (equivalent w.r.t.
repartioning of algorithm boundaries).

Hybrid 0. Instead of using the corrupt parties’ identity keys to construct NIWI
proofs, Sim now uses the Gatt’s signing key to sign a signature, and then use the
signature as the witness.

Claim. Assume that NIWI is computationally witness indistinguishable, then
Hybrid 0 is computationally indistinguishable from the simulated execution.

Proof. By straightforward reduction to witness indistinguishability of the NIWI.

53

Claim. Assume that PKE is perfectly correct, then Hybrid 0 is computationally
indistinguishable from the real execution.

Proof. For every execution trace view, the real-world exeuction and Hybrid 0 can
only differ if PKE decryption did not decrypt to an honest party’s plaintext in
which case Ffmpc has a different view of honest parties’ inputs than the enclave
program. This cannot happen due to the perfect correctness of PKE.

8 Fair 2-Party Computation

Attested execution processors often provide a trusted clock to applications. In
this section, we explore the expressive power of such a trusted clock in the
context of fair multi-party computation. Throughout this section, we adopt the
following conventions:

– Whenever stating lower bound results, we assume that a sequential com-
position [20] notion of security is adopted (rather than universally compos-
able [21, 22, 26]). Note that assuming a weaker security notion in the lower
bound context makes the lower bound stronger.

– When describing our new fairness constructions, we will adopt the stronger,
universally composable notion of security [21].

We formally define these notions in Appendix A.3.

8.1 Background on Fair 2-Party Computation

We first quickly review the known results about fairness in the standard model:

– A well-known lower bound by Cleve [32] shows that it is impossible to achieve
fair 2-party coin flipping in the standard model. Cleve [32] also extends his
impossibility result to the multi-party case, showing that fair coin toss is
impossible if at least half of the parties are corrupt. Cleve’s result implies
that fair multi-party computation is impossible for general functionalities
when half of the parties may be corrupt.

– A sequence of recent works [9, 46, 47] show that the prior folklore interpre-
tation of Cleve’s impossibility is incorrect. Specifically, the general fairness
impossibility does not imply that fairness is impossible for every function.
These works then make an effort at characterizing exactly which class of
functions can be computed fairly [9, 46,47].

We will now explore how a trusted clock in an attested execution processor
can help with fairness.

54

8.2 Modeling a Trusted Clock

We assume a synchronous execution model, where protocol execution proceeds
in atomic time steps called rounds. We assume that the trusted clocks of attested
execution processors and the network rounds advance at the same rate. It is easy
to adapt our model and results if the processors’ trusted clocks and the network
rounds do not advance at the same rate.

Execution model. For clarity, we explicitly state the execution model.

– In each round, the environment Z must activate each party one by one, and
therefore, all parties can naturally keep track of the current round number.

– A party can perform any fixed polynomial (in λ) amount of computation
when activated, and send messages.

– We consider a synchronous communication model where messages sent by an
honest party will be delivered at the beginning of the next round. Whenever
a party is activated in a round, it can read a buffer of incoming messages to
receive messages sent to itself in the previous round.

Clock-aware functionalities. To model trusted clocks in attested execution
processors, we will provide a special instruction such that enclave programs as
well as ideal functionalities can query the current round number.

We say that a functionality F is clock-aware if the functionality queries the
local time; otherwise we say that the functionality F is clock-oblivious.

Henceforth in this section, all our upper bound results require only relative
clocks — in other words, all enclaves’ trusted clocks need not be synchronized,
since our protocol will only make use of the number of rounds that have elapsed
since initialization. Therefore, we will assume the following notational conven-
tions:

– When a functionality reads the clock, a relative round number since the first
invocation of the functionality is returned;

– When an enclave program reads the clock, a relative round number since the
first invocation of the enclave program is returned.

8.3 Definition: Protocols and Fairness in the Clock Model

We now give a few basic definitions for secure multi-party computation in the
clock model of execution. Most importantly, we will define a notion of ∆-fairness
in the clock model: roughly speaking we say that a protocol ∆-realizes some
functionality, if there exists a fixed polynomial ∆(·), such that if the adversary
receives outputs by round r, then the honest parties must receive outputs by
round ∆(·).

Henceforth in this section, when we say efficient protocols, we mean the
following:

– There exists a fixed polynomial g(·) such that if all parties behave honestly,
the protocol will terminate in g(λ) rounds and all parties output the correct
outcome except with negligible probability.

55

∆-fair 2-PC functionality Ff,∆[sid ,P0,P1]

On receive (“compute”, inpi) from Pi where i ∈ {0, 1}:
if P1−i has sent (“compute”, inp1−i): let (outp0, outp1) := f(inp0, inp1)

On receive (“output”, δ∗) from A:
δ := min(δ∗,∆(r)) where r is the current round counter
assert (outp0, outp1) has been stored
send outpb to A immediately where b corresponds to the corrupt party
delay send outp1−b to the honest party in exactly δ rounds

Fig. 10: The ideal fair two-party computation functionality. Depending
on the protocol, the “delay send” operation may optionally require the honest
party to poll before sending the output.

– If at least one party is corrupt, we do not require that honest parties terminate
in a fixed polynomial number of rounds. For example, for any fixed polynomial
g(·), the adversary can cause a longer delay such that the adversary receives
outputs in round r := g(λ) + 1 — and if the protocol ∆-realizes the intended
functionality, then honest parties are then guaranteed to receive outputs by
round ∆(r). In other words, in the presence of corrupt parties, the running
time of the protocol may depend on the running time of the adversary (and
hence not bounded by any fixed polynomial).

We now define the notion of ∆-fairness. Specifically, we define a functionality
Ff,∆ which is parametrized by a function f that it computes and the fairness
parameter ∆. Below we define it for 2-party protocols, and extensions to multiple
parties is in the most natural manner.

Henceforth, we say that a protocol Π realizes Ff with ∆-fairness if Π se-
curely realizes Ff,∆ by Definition 2 of Appendix A.4. We say that a protocol
Π UC-realizes Ff with ∆-fairness if Π UC-realizes Ff,∆ by Definition 3 of Ap-
pendix A.4. We use the notation Ff to denote the standard, fair multi-party
computation functionality that computes the function f .

As noted earlier, all of our lower bound results are stated for the weaker
notion of sequentially composable multi-party computation (Definition 2) —
and this makes our lower bounds stronger. By contrast, all of our upper bound
results will adopt the stronger, universally composable security.

8.4 Lower Bounds for Fair 2-Party Computation

In this section, we will present two lower bounds that show the following:

1. Fairness for general functionalities is impossible if Gatt is not clock-aware,
even when both parties are equipped with a secure processor, and even when
the adversary is only fail-stop. Although Cleve [32]’s lower bound proof can
easily be adapted to this setting, we instead prove it for a contract signing

56

functionality, since we use this as a warmup to prove the impossibility result
stated next.

2. Fairness for general functionalities is impossible if Gatt is indeed clock-aware;
however, only one of the two parties is equipped with a secure processor.
Similarly, this lower bound holds even when the adversary is only fail-stop.

As a warmup, we first prove why fairness is impossible for general functions
if our Gatt functionality is not clock-aware — even when secure processors are
omnipresent. As mentioned earlier, although Cleve [32]’s lower bound can easily
be adapted to this setting, we prove it instead for contract signing as a warmup
exercise — since we will later modify such a proof to show the impossibility of
fairness for general functions in the presence of a single secure processor.

Theorem 14 (Fairness impossiblity without trusted clock.). If Gatt is
not clock-aware, and assume that one-way function exists, then there exists a
polynomial-time function f such that no two-party, Gatt-hybrid protocol can se-
curely realize Ff even when both parties are in the registry of Gatt, and even
against a fail-stop adversary.

Proof intuition. We describe the proof intuition assuming Gatt is the func-
tionality. The same proof works for Gatt too. To prove the above theorem, we
consider a specific contract signing functionality, i.e., the function fcontract takes
as input two parties’ public and secret keys henceforth denoted (pk0, sk0) and
(pk1, sk1), and outputs Pb’s signature on the message 0 to party P1−b, where
b ∈ {0, 1}. Henceforth we let Fcontract := Ffcontract .

The proof is similar to the folklore proof that demonstrates the impossibility
of contract signing in the plain setting. The idea is the following: consider a Gatt-
hybrid protocol Π that fairly realizes Fcontract, and without loss of generality,
assume that P1 sends the last message in protocol Π. We now show that if P1 is
the corrupt party and aborts prior to sending the last message, then the ideal-
world simulator Sim must send sk1 to Fcontract in within fixed polynomially
many rounds during the simulation — otherwise one could leverage Sim and
Gatt to break the signature scheme. Since Fcontract will immediately output to
the honest party P0 in the ideal-world execution, this means that in the real-
world execution (against the fail-stop adversary P1), P0 must output the correct
signature within a fixed polynomial number of rounds too. We therefore conclude
that Π−1 must fairly realize Fcontract too where Π−1 is the same as Π but with
the last message removed, and where P0 always assumes that the last message
is dropped and directly outputs. In this way, we can one by one remove the
messages in the protocol Π, until we obtain a degenerate protocol that does
not send any messages. In such a protocol, the only possible interactions are
between the two parties and Gatt. It is not hard to see that since there is no
direct information flow between enclaves inside Gatt, the degenerate protocol
cannot securely realize Fcontract since otherwise we can leverage either party to
build a reduction that breaks the signature scheme. We thus reach a contradition,
and conclude that such a ∆-fair protocol Π cannot exist in the first place.

57

Contract signing function fcontract

On receive ((sk0, pk0, pk1), (sk1, pk
′
0, pk

′
1))

assert pk0 = pk′0, pk1 = pk′1; for i ∈ {0, 1}: assert check(pki, ski) = 1
output (outp0, outp1) where outp1 := Sign(sk0,0), outp0 := Sign(sk1,0)

Proof. Consider a signature scheme with the additional following properties:

– There exists an algorithm called check(·, ·) such that

Pr
[
(pk, sk)

$←Gen(1λ) : check(pk, sk)
]

= 1

– For each pk in the range of Gen, there is only one sk such that check(pk, sk) =
1.

– For each sk in the range of Gen, there is only one valid signature for every
message m ∈ {0, 1}∗.

Consider a Gatt-hybrid protocol Π that realizes a contract signing function-
ality Fcontract := Ffcontract with fairness, against any p.p.t. fail-stop adversary.

For convenience, we only consider protocols that are non-degenerate, i.e.,
when we say that protocol Π realizes a functionality F , we mean that Π not
only satisfies the security definition as in Definition 2, moreover, if neither party
aborts, both parties must output the correct answer with probability 1−negl(λ)
if randomly chosen keys are used as the parties inputs. More formally, we require
that there exists a negligible function negl(λ) such that for any λ,

Pr

[
(pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ),
view← execΠ,P0,P1(1λ, (sk0, pk0, pk1), (sk1, pk0, pk1))

:
P0 and P1 out-
put correct sigs
in view

]
≥ 1−negl(λ)

Suppose that execΠ(x, y, λ) completes within R(λ) rounds with probability
1 (for any inputs). Without loss of generality, assume that the protocol always
completes in exactly R rounds and that P1 sends the last message.

Now imagine that P0 executes the protocol with an adversary P∗1 that aborts
in the last round, but otherwise follows the honest algorithm and outputs what-
ever the honest algorithm outputs. Notice there is a P∗1 that can succeed in
outputting a valid σ1 with probability 1− negl(λ).

Since Π securely realizes Fcontract, there exists a simulator S such that

{idealFcontract,S(1λ, x, y, z)}x,y,z
c≡ {execΠ,P0,P∗

1 (1λ, x, y, z)}x,y,z

For this to happen, it must be the case that there exists a negligible function
negl(λ) such that for every λ, for every non-uniform polynomially bounded z,

Pr

[
(pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ),
view← idealFcontract,S(1λ, (sk0, pk0, pk1), (sk1, pk0, pk1), z)

:
S sends sk1 to
Fcontract in view

]
≥ 1−negl(λ)

58

In other words, if randomly chosen keys are used as the parties’ inputs, then
S must send sk1 to Fcontract except with negligible probability. Since if S does
not send sk1 to Fcontract, then we can leverage the combination of S and Gatt to
construct a signature adversary that breaks the signature scheme. However, if
S sends sk1 to Fcontract, then in the ideal execution, the honest P0 will output
the correct σ1 with probability 1. This means that with randomly chosen keys
as the parties’ inputs, in the real execution execΠ(P0(1λ, (sk0, pk0, pk1)), P∗1
(1λ, (sk1, pk0, pk1), z)), the honest P0 will output the correct σ1 with probability
1 − negl(λ). More formally, there exists a negligible function negl(λ) such that
for every λ, for every non-uniform polynomially bounded z,

Pr

[
(pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ),

view← execΠ,P0,P∗
1 (1λ, (sk0, pk0, pk1), (sk1, pk0, pk1), z)

:
P0 outputs cor-
rect sig in view

]
≥ 1−negl(λ)

This means that the last (i.e., R-th) message is superfluous. In other words,
consider a protocol Π−1 which is identical as Π except with the last message
removed. We claim that if Π realizes Fcontract with fairness against any p.p.t.
fail-stop adversary, then so does Π−1. First, observe that Π−1 clearly is non-
degenerate as argued above. For any (x, y, z), for any p.p.t. fail-stop adversary
A for the protocol Π−1 — note that A can also be regarded as an adversary for
the protocol Π — we have that

{execΠ−1,A(λ, x, y, z)}x,y,z
c≡ {execΠ,A(λ, x, y, z)}x,y,z

Since Π realizes Fcontract with fairness against fail-stop adversaries, there exists
a p.p.t. S, such that

{execΠ−1,A(λ, x, y, z)}x,y,z
c≡ {execΠ,A(λ, x, y, z)}x,y,z
c≡ {idealFcontract,S(λ, x, y, z))}x,y,z

Now we can prove by induction: one at a time, we remove the rounds of
the protocol Π, until we have the empty protocol Π∅ that does not send any
messages; and we conclude that Π∅ securely realizes Fcontract as well (and is
non-degenerate) — but this clearly is impossible since otherwise we can leverage
either party to break the signature scheme.

Theorem 15 (Fairness impossibility with trusted clocks, but when one
party does not have a secure processor). Assume that one-way functions
exist. Even when Gatt is indeed clock-aware, there exists a polynomial-time func-
tion f such that no Gatt-hybrid protocol can securely realize Ff with ∆ fairness
for any polynomial function ∆, even when the adversary is only fail-stop — if
only one of the parties is in the registry of Gatt.

Proof intuition. Although the proof of this theorem bears a superficial resem-
blance to that of Theorem 14, here the proof is more subtle. Following the proof
of Theorem 14, we use the same strategy of removing the protocol messages

59

one by one starting from the last round. Assume that a Gatt-hybrid protocol Π
securely realizes Fcontract with ∆-fairness, and let g(·) denote the running time
of Π when both parties are honest. Without loss of generality, assume that P0

is the party to send the last message in Π. Further, assume that P0 is equipped
with a secure processor but P1 is not.

1. Now consider a fail-stop adversary P0 that aborts prior to sending the last
message. Clearly, P0 can output the correct outcome in g(λ) rounds. This
means that in the simulation, by round g(λ) the simulator Sim must send
(sk0, δ

∗) to the ideal functionality Fcontract (without loss of generality, we
assume that the adversary P0 does not wait extra rounds to output after
dropping the last message), since otherwise it is not difficult to construct a
reduction that leverages Sim and Gatt to break the signature scheme. This
means that in the ideal execution, the honest party P1 must output to Z the
correct output within ∆(g(λ)) rounds — and therefore in the real execution,
this must hold as well. Since P1 does not have a secure processor, it is not
hard to see that if P1 can correctly output to Z in ∆(g(λ)) rounds, it can
correctly output to Z in g(λ) rounds — since it did not receive any additional
message after round g(λ).

2. Now, consider the protocol Π−1 that is defined in the same way as Π, but
with the last message removed, and with P1 simply assuming that there is
no last message and directly outputting without waiting to receive the last
message. Using the observation from before, we know that P1 can output in
g(λ) rounds. Now consider a fail-stop P1 that aborts prior to sending the last
message of Π−1 This means that in the simulation, the simulator Sim must
send (sk1, δ

∗) to Fcontract by round g(λ). And therefore, both the ideal-world
and real-world P0 must correctly output to Z by round ∆(g(λ)).

3. Now consider the protocol Π−2 with one additional message removed. If a
fail-stop P0 aborts prior to sending the last message, we know that can output
correctly to Z in ∆(g(λ)) rounds. This means that Sim must send (sk0, δ

∗)
to Fcontract by round ∆(g(λ)). Therefore, in both the real- and ideal-world
executions, P1 must output correctly to Z by round ∆(∆(g(λ))) However,
since P1 does not have a secure processor, without loss of generality, P1 can
actually output correctly to Z by round g(λ).

4. Now consider the protocol Π−3, and so on so forth.

Eventually we will arrive at a degenerate protocol that does not send mes-
sages between P0 and P1, and we conclude that this degenerate protocol se-
curely realizes Fcontract with ∆-fairness. The only interactions left in this de-
generate protocol are between Gatt and the parties. Now, since Gatt ensures non-
interference between enclaves, such a degenerate protocol clearly cannot securely
realize Fcontract since otherwise we can leverage either party to break the sig-
nature scheme. We thus reach a contradition, and conclude that such a ∆-fair
protocol Π cannot exist in the first place.

Why the proof breaks when both parties have a secure processor. We
point out why this proof would break when both parties are equipped with a

60

secure processor with trusted clock — indeed, we will later show a construction
that lets us achieve ∆-fairness for securely computing general functions where
∆(r) = 2r.

Notice that in the above proof sketch, we repeatedly make use of the fact
that when the party without a secure processor P1 is the honest party, when
the other party aborts, in both the ideal- and real-world executions, P1 can
output correctly within g(λ) number of rounds — since nothing prevents P1

from finishing the remainder of the computation immediately and outputting. If
this were not the case, e.g., if P1 also has a secure processor, then it would no
longer be true that P1 can immediately output if P0 aborted prior to sending
the last message — since Gatt could now withhold messages from P1 for some
number of rounds before outputting them to P1. This would cause the simulator’s
runtime to blow up by a polynomial factor every time we remove a message, and
therefore depending on what the ∆ function is, after polynomially many such
removals, the simulator would no longer be polynomial time.

Proof. Imagine that f is a contract signing functionality as defined earlier. f
checks that both parties provide the same public keys as input, and checks that
the secret key each party provides agrees with one of the public keys. If so, f
will allow two parties to exchange signatures on the message 0.

Without loss of generality, assume that P0 has a secure processor, and P1

does not.
Now consider a protocol Π that securely realize F∆contract. Consider an adver-

sary controlling one of the parties that aborts prior to sending the last message,
but otherwise obeys the honest protocol and outputs the final answer. There are
two cases:

Case 1: Party who sends last message has a secure processor. Consider an ad-
versary P∗0 that aborts prior to sending the last message. P∗0 is otherwise honest
and after aborting, it follows the honest algorithm (possibly for multiple rounds,
sending more inputs to Gatt), and finally outputs what the honest algorithm
outputs (that is, the correct signature σ1).

Since Π securely realizes Fcontract, there exists a simulator Sim such that

{idealFcontract,Sim(1λ, x, y, z)}x,y,z
c≡ {execΠ,P

∗
0 ,P1(1λ, x, y, z)}x,y,z

Notice that in the real-world execution, P∗0 outputs the correct signature in g(λ)
number of rounds where g is a fixed polynomial. For the ideal-world execution
to be computationally indistinguishable, in some round Sim must send (sk0, δ

∗)
to F∆contract for some δ∗ within g(λ) number of rounds. Since if Sim does not
send sk0 to Fcontract, then we can leverage the combination of Sim and Gatt
to construct a signature adversary that breaks the signature scheme. We know
that δ ≤ ∆(g(λ)) is bounded by a fixed polynomial. This means that in the real-
world execution, P1 must output the correct signature within a fixed polynomial
number of rounds if P∗0 aborted before sending the last message.

Now we consider the protocol Π−1 that is almost identical to Π, but with
the last message removed. Further, P1 outputs the outcome pretending that P0

61

aborted before sending the last message in Π. We can easily show that if Π
securely realizes F∆contract against any fail-stop adversary, so must Π−1.

Case 2: Party who sends the last message does not have a secure processor.
Consider an adversary P∗1 that aborts prior to sending the last message, but is
otherwise honest — however, once it aborts, it immediately outputs what the
honest algorithm would have output without waiting for more rounds. We note
that since P∗1 does not have a secure processor, without loss of generality, it
can always immediately finish all remaining computation after aborting even if
the honest protocol may stipulate that the party waits for more rounds — it
turns out that this is important for the induction steps in the proof to work,
since otherwise the simulator’s runtime will blow up by a polynomial factor with
each step of the induction, and after polynomially many induction steps, the
simulator’s runtime may no longer be polynomial.

There exists a p.p.t. simulator Sim such that the ideal- and real-world execu-
tions are computationally indistinguishable. Further, in g(λ) number of rounds
Sim must send (sk1, δ

∗) to the ideal functionality, since otherwise we can leverage
Sim to break the signature scheme. We know that now the honest P0 will receive
output by round ∆(g(λ)). This means that in the real-world execution, P0 will
output the correct signature by round ∆(g(λ)) too if P∗1 aborted before sending
its last message.

Now consider the protocol Π−1 which is Π but with the last message re-
moved. Further, at the end P0 will compute the output as if P1 aborted before
sending the last message in protocol Π. We can easily show that if Π securely
realizes F∆contract against fail-stop adversaries, so must Π−1.

Induction. Based on the above, we can do an induction, removing the protocol
messages one by one from the last message till the first. In each step of the
induction, we have a protocol with the guarantee that if both parties are honest,
both parties will output the correct signature within a fixed polynomial number
of rounds — note that whenever the reduction comes to a step when the corrupt
party does not have a secure processor, without loss of generality, the corrupt
party can always finish all remainding computation and output immediately. By
leveraging this property, in any step of the induction, the protocol’s running
time is bounded by ∆(g(λ)) when both parties are honest. At the end of the
induction, we conclude that one party can output the correct signature in a
fixed polynomial number of rounds, without receiving any messages from the
other party. This clearly is impossible with Gatt or Gatt, since no information
flow exists between the two parties’ enclaves within Gatt or Gatt itself.

8.5 Fair 2-Party Coin Toss with a Single Secure Processor

Although we cannot ∆-fairly compute general functionalities when only one
party has an attested execution processor, we show that interestingly, even with
only one attested execution processor (that has a trusted clock), we can already
∆-fairly compute more functions than what is known to be possible in the plain
setting. Specifically, we show how to realize a ∆-fair 2-party coin toss protocol.

62

progcoin[C,S]

On input (“toss”, ga):

let b
$←Zp, sk := (ga)b, coin

$←{0, 1}, ct := Encsk(coin), return (ct, ga, gb)

On input (“output”, v):
if v 6= ⊥, return v
assert at least 1 round has been skipped since “toss”, return coin

Protcoin[sid , C,S]

Server S:

let eid := Gatt.install(sid , progcoin[C,S]), await (“toss”, ga) from C
(ct, ga, gb, σ) := Gatt.resume(eid , (“toss”, ga)), send (eid , ψ(C, ct, ga, gb, σ)) to C
skip a round
(coin,) := Gatt.resume(eid , “output”)

except: if C aborted, coin
$←{0, 1}

output coin

Client C:

let a
$←Zp, send (“toss”, ga) to S, await (eid , ψ) from S

let ψ := (msg, C, π), assert NIZK.Ver(crs, (sid , eid , C,mpk,Gacrs.mpk, C,msg), π)
parse ψ := (ct, ga,), if parse succeeds: let coin := Decsk(ct)

except: if S aborted or no coin was decrypted: coin
$←{0, 1}

output coin

Fig. 11: Fair 2-party coin toss when only S has a secure processor.
ψ produces a witness indistinguishable proof that either a ciphertext encrypts
a valid attestation for the message, or it encrypts the receiver’s identity key
— see Section 7 for detailed definitions. Assertion failures are caught by the
exception handler except. The await instruction waits to receive the message at
the beginning of the next round, and treats the other party as having aborted if
such a message was not received in time. If the other party aborted during the
protocol, control is immediately passed to line marked except.

63

Due to a well-known result by Cleve [32], we know that fair 2-party coin toss is
impossible in the standard setting even against a fail-stop adversary.

A two-party coin toss function is defined as below, and henceforth we define
the functionality Fcoin := Ffcoin .

Coin toss function fcoin

On receive (inp0, inp1)

if inp0 = inp1 = “okay”: let coin
$←{0, 1}, outp0 = outp1 := coin

else if one input 6= “okay”: for b ∈ {0, 1}, let outpb
$←{0, 1}

output (outp0, outp1)

More specifically, the fair coin toss functionality Fcoin tosses a fair coin be-
tween two parties, such that 1) if both parties are honest, they receive the same
uniform random coin as output; and 2) if one of the parties is corrupt and de-
viates from the protocol (including aborting), the other honest party outputs a
fresh, independent random coin.

We now describe a Gatt-hybrid protocol that UC-realizes the Fcoin function-
ality with ∆ fairness where where ∆(r) := r + 1. The formal description of the
protocol is presented in Figure 11. Here we explain the intuition. Imagine that
a server S has a secure processor (modeled as Gatt) but the client C does not.
First, the client C establishes a secure channel with an Gatt enclave. Then, Gatt
flips a random coin and sends it over the secure channel to C — note that S is
the intermediary forwarding the message, but S cannot see the contents of this
encrypted message nor modify it. At this moment, however, Gatt still withholds
the coin from S, such that S cannot decide whether to drop this message based
on the value of the coin — only in the next round will Gatt reveal the outcome
of the coin to S. Now if S fails to forward the message in time, C simply treats
S as having aborted, flips an independent random coin on its own, and outputs
its value.

In comparison, in standard coin flipping without Gatt, the party who sees the
outcome of the coin flip first can decide whether to abort based on whether he
likes the outcome. Even though the other party can generate a fresh random coin
at this moment, the outcome will already be biased. Our protocol circumvents
this problem because a corrupt server S effectively must decide whether to abort
before seeing the outcome of the coin toss.

Theorem 16 (Fair 2-party coin toss with a single clock-aware attested
execution processor). Assume that the encryption scheme is a perfectly correct
and satisfies semantic security, assume that the DDH assumption holds in the
relevant group, and that the signature scheme Σ is existentially unforgeable under
chosen message attacks, then the Gatt-hybrid protocol defined in Figure 11 UC-
realizes Fcoin with ∆ fairness where ∆(r) := r + 1.

Proof. We now prove the above theorem.

64

When S is corrupt. We can construct the following simulator Sim.

– Sim randomly generates a and sends S the tuple (“toss”, ga).
– Sim directly passes through any communication between S and Gatt, except

if the call is Gatt.resume(eid , “output”) where eid is the challenge eid — this
case will be treated later.

– If S sends the tuple (eid , ψ) in time where ψ := (ct, ga, gb, , π) — at this
time eid is called the challenge eid — Sim checks to see if S ever made an
Gatt.install(sid , progcoin[C,S]) query that returned the challenge eid . Sim
also checks to see if S ever made an Gatt.resume(eid , (““toss””, ga)) query
that returned (ct, (ga, gb),) where the terms eid , ct, ga, gb correspond to ei-
ther the term contained in the message from S or what Sim sent earlier.
If either check fails, Sim sends (“compute”,⊥) to Fcoin, and then it sends
(“output”, now) where now is the identity function that indicates to output
to the honest party in this very round.
Otherwise, if the checks pass, Sim sends (“compute”, “okay”) to Fcoin, fol-
lowed by (“output”, now). At this moment Sim receives an output coin from
Fcoin and remembers it.

– If Sim did not receive such a tuple from S in time, S is treated as having
aborted. In this case, Sim also sends (“compute”,⊥) to Fcoin, and then it
sends (“output”, now) to Fcoin where now is the identity function.

– If S queries Gatt.resume(eid , “output”, v), if v 6= ⊥, simply pass through
the call. If v = ⊥ and Sim has received coin from Fcoin, let (coin, σ) :=
Gatt.resume(eid , “output”, coin), return (coin, σ). Otherwise, return ⊥.

– Finally, Sim passes through any communication between Z and S.

Hybrid 0. Hybrid 0 is the same as the simulation, except that whenever S sends
any query of the form Gatt.resume(, (“toss”, ga)) pertaining to the challenge ga

that Sim sent to S, Gatt now chooses sk at random rather than by computing
(ga)b. Further, if S queries Gatt.resume(eid , (“toss”, ga)) on the challenge eid ,
then the simulated honest client will also use the same random sk Gatt generates
to decrypt.

Claim. Assume that the DDH assumption holds, then Hybrid 0 is computation-
ally indistinguishable from the simulated execution.

Proof. Through a straightforward reduction to DDH — a hybrid argument can
be applied for over each query of the form Gatt.resume(, (“toss”, ga)).

Hybrid 1. Hybrid 1 is almost the same as Hybrid 0, except that when Sim sends
(“compute”,⊥) to Fcoin and the real-world client did not trigger the exception
handler, we modify the simulation to simply abort.

Claim. Assume that the with proof system is computationally sound, that PKE
is perfectly correct, and that signature scheme is secure, then the probability
that Hybrid 1 aborts is negligible.

65

Proof. Similar to that of Lemma 1 of Section 7.

We now consider two cases, and in both cases, we show why Hybrid 1 is
computationally indistinguishable from the real execution.

– Case (a): the random coin Fcoin generated for the corrupt party is the same
as coin Gatt generated; and

– Case (b): the random coin Fcoin generated for the corrupt party differs from
the coin Gatt generated

Hybrid 2(a). Almost the same as Hybrid 1, except that we switch the random
keys sks back to real keys again.

Claim. Given that the DDH assumption holds, Hybrid 2(a) is computationally
indistinguishable from Hybrid 1.

Proof. Similar to the indistinguishability of Hybrid 0 and the simulated execu-
tion.

Claim. Conditioned on Case (a) happening and that the simulation did not
abort, it holds that Hybrid 2(a) is identically distributed as the real execution.

Proof. Straightforward to observe.

Henceforth, we focus on Case (b).

Hybrid 2(b). Hybrid 2(b) is almost identical as Hybrid 1, except that Gatt now
encrypts 1− coin instead of coin.

Claim. Assume that AE is semantically secure, then Hybrid 2(b) is computa-
tionally indistinguishable from Hybrid 1.

Proof. Through a straightforward reduction to encryption security.

Hybrid 3(b). Hybrid 3(b) is almost identical as Hybrid 2(b), except that now
we switch back to real sks rather than random sks.

Claim. Assume that the DDH assumption holds, then Hybrid 3(b) is computa-
tionally indistinguishable from Hybrid 2(b).

Proof. Symmetric to the indistinguishability of Hybrid 2(a) and Hybrid 1.

Claim. Conditioned on Case (b) happening and that the simulation did not
abort, Hybrid 3(b) is identically distributed from the real execution.

Proof. Straightforward to verify.

66

When C is corrupt. We can construct the following simulator Sim. Sim receives
a tuple (“toss”, ga) from C. If C aborted without sending a well-formed message,
Sim sends (“compute”,⊥) to Fcoin followed by (“output”, now).

Otherwise, Sim sends (“compute”, “okay”) to Fcoin followed by
(“output”, now + 1), and receives an outcome coin from Fcoin. Now Sim
uses the witness indistinguishable proof, but uses C’s identity key as the
alternative witness, to compose an appropriate answer back to C, and it will
embed the coin it received from Fcoin into this answer.

Sim passes through any communication between C and Z.
It is not hard to see that given that the proof system is witness indistin-

guishable and that PKE is perfectly correct, the simulated execution and the
real-world execution are computationally indistinguishable. The formal proof is
straightforward and is similar to the honest-server case of our (Gacrs,Gatt)-hybrid
protocol that achieves MPC with a single secure processor (see Section 7).

When both parties are honest. It is not hard to see that this case can be
simulated easily given our usage of secure and authenticated channels in the
protocol.

8.6 Fair Generic 2-Party Computation with Omnipresent Secure
Processors

We now show that if both parties have a clock-aware attested execution proces-
sor, we can securely compute any polynomial-time function with ∆ fairness. The
formal protocol description is presented in Figure 12. We explain the intuition
below. The idea is to have a quid pro quo style protocol, where the two parties’
secure processors bargain with each other as to when to release the computation
result. The protocol works as follows:

– In the beginning of the protocol, the two parties’ secure processors establish
secure channels with each other, such that both secure processors learn the
outcome. At this time, both secure processors set δ := 2λ, which is the
intended time to release the result to the platform that owns the secure
processor.

– Now, in every turn, each secure processor halves δ and promises the other
secure processor that it will release the outcome in δ ← δ

2 time instead.
– If both parties are honest, then after O(λ) rounds, both parties learn the

outcome. If one of the parties (say, P0) aborts, then it is not hard to see that
if P0 learns the outcome by round r, then P1 learns the outcome by round
2r.

Figure 12 describes the full protocol. Most of the protocol is quite natural,
but there are a couple technicalities to point out. First, because each party sends
their respective input to its local enclave, the simulator can observe this com-
munication and perform extraction. Second, we note that the enclave program’s
“output” entry point offers a backdoor v for programming the output. In this
protocol, however, since both parties simply query their local enclave for the

67

progfair2pc[f,P0,P1, i] where i ∈ {0, 1} // for party Pi

On initialize: δ := 2λ

On input (“keyex”): let a
$←Zp, and return ga

On input (“send”, gb, inpi):
assert “keyex” has been called

let sk := (gb)a, ct := AE.Encsk(inpi), return ct

On input (“receive”, ct):
assert “keyex” and “send” have been called, assert ct not seen
let x1−i := AE.Decsk(ct), ct

′ := AE.Encsk(δ), return ct′

On input∗ (“ack”, ct):
assert ct not seen, assert AE.Decsk(ct) = δ
let δ := bδ/2c, ct′ := AE.Encsk(δ), return ct′

On input (“output”, v):
if v 6= ⊥, return v
assert “receive” has been called, assert current round ≥ δ, return f(inp0, inp1)

Protfair2pc[sid , f,P0,P1, i] where i ∈ {0, 1} //for party Pi

On input inpi from Z:
let eid := Gatt.install(sid , progfair2pc[f,P0,P1, i])
let (, ga, σ) := Gatt.resume(eid , “keyex”)

send (eid , ga, σ) to P1−i, await (eid ′, gb, σ′) from P1−i

assert Σ.Vermpk((sid , eid
′, progfair2pc[f,P0,P1, 1− i], gb), σ′)

let ct := Gatt.resume(eid , (“send”, gb, inpi)), send ct to P1−i, await ct′

let ct := Gatt.resume(eid , (“receive”, ct′)), send ct to P1−i, await ct′

repeat λ times:
let ct := Gatt.resume(eid , (“ack”, ct′)), send ct to P1−i, await ct′

On input “output” from Z:
return Gatt.resume(eid , “output”,⊥)

Fig. 12: Fair 2-party computation with omnipresent secure processors.
Upon assertion failure, control is yielded back to the environment Z. Await
instructions yield control back to the environment Z if no message is received
at the end of a round.

68

output, the backdoor for programming is simpler than the non-fair counterpart
in Section 6.2. Particularly, here a (corrupt) party can always choose not to learn
its own output and ask the enclave to instead sign any value v of its choice, and
this does not harm the security of the honest party in the protocol. By con-
trast, in the non-fair counterpart in Section 6.2, one party obtains the signed
attestation and sends it to the other (in the efficient variant where only one
party’s enclave performs program-dependent computation). Therefore, in that
protocol the honest party must protect itself against a corrupt party who might
aribtrarily program its enclave’s output.

Theorem 17 (Fair 2-party computation with omnipresent, clock-
aware attested execution processor). Assume that DDH holds in the rel-
evant group, AE is perfectly correct, and satisfies semantic security and INT-
CTXT security, and that the signature scheme Σ is existentially unforgeable
under chosen message attacks, it holds that the protocol described in Figure 12
UC-realizes Ff with ∆ fairness, where ∆(r) := 2r.

Proof. We now prove the above theorem. When both parties are honest, it is not
difficult to construct a simulation. We focus on the more interesting case when
one party is corrupt. Without loss of generality, we consider the case when P0

is honest and P1 is corrupt — the other case is symmetric.
We can now construct a simulator Sim as described below.

– Unless otherwise noted later, Sim passes through messages between P1 and
Gatt. Sim also passes through communications between P1 and Z.

– Sim calls eid ′ := Gatt.install(sid , progfair2pc[f,P0,P1, 0]), and (, gb, σ′) :=

Gatt.resume(eid ′, “keyex”) and sends (eid ′, gb, σ′) to P1.
Sim waits to receive the first message (eid , ga, σ) from P1 — if this tuple
was not the answer to a previous Gatt query, jump to the exception handler
denoted except. At this point, eid is called the challenge eid .

– The first time P1 calls Gatt.resume(eid , (“send”, gb, inp1) for some input inp1
where gb is what Sim has sent, the simulator Sim extracts and sends inp1 to
Ff,∆.

– Sim calls ct1 := Gatt.resume(eid ′, (“send”, ga,0)) and sends ct1 to P1.
Sim waits to receive ct from P1. If ct is the not result of the first
Gatt.resume(eid , (“send”, gb,) call where eid is the challenge eid , and gb

was what Sim previously sent to P1, or if no such call has taken place, then
go to the exception handler except.

– Sim calls ct2 := Gatt.resume(eid ′, (“receive”, ct)) and sends ct2 to P1.
Sim waits to receive ct from P1. If ct is the not result of the first
Gatt.resume(eid , (“receive”, gb, ct1) call where eid is the challenge eid , and
gb, ct1 are what Sim previously sent to P1, or if no such call has taken place,
then go to the exception handler except.

– Now repeat λ times with i starting at 3 and incrementing each turn: Sim calls
cti := Gatt.resume(eid ′, (“ack”, ct)), and sends cti to P1. Sim waits to receive
ct from P1. If ct is the not result of the first Gatt.resume(eid , (“ack”, cti−1)
call where eid is the challenge eid , and cti−1 is what Sim just sent P1, then
go to the exception handler except.

69

– Sim simulates the current value of δ: every time it receives an acknowledge-
ment from P1, and the exception handler is not triggered, it halves δ.

– If P1 ever sends any message late, it is treated as having aborted. In this
case, jump to the exception handler denoted except.

– If the execution succeeded without triggering the exception handler, then
send (“output”, now) to Ff,∆. At this time Sim receives the outcome of the
computation from Ff,∆ henceforth denoted outp1.

– except: If any exception was triggered: in round δ
2 , send (“output”, ∆) where

∆(r) := 2r to Ff,∆. At this time Sim receives the outcome of the computation
from Ff,∆ henceforth denoted outp1.

– When Sim receives Gatt.resume(eid , “output”, v) from P1, if v 6= ⊥, pass
through the call. Else if current round < δ

2 , return ⊥. Else, call (outp1, σ) :=
Gatt.resume(eid ′, “output”, outp1) return (outp1, σ).

Hybrid 0. Identical to the simulation, except that every occurrence of the chal-
lenge sk = gab is replaced with a random key.

Claim. Assume that DDH holds, then Hybrid 0 is computationally indistinguish-
able from the simulation.

Proof. Straightforward reduction to DDH security.

Hybrid 1. Identical to Hybrid 0, except that every time the exception handler is
triggered in the simulation, if the real-world P0 would not have had an assertion
failure, abort the simulation.

Claim. Assume that the signature scheme Σ is secure and that AE has INT-
CTXT security, it holds that Hybrid 1 aborts with negligible probability.

Proof. If the exception handler is triggered in the simulation, and the real-world
P0 did not have a signature verification failure or a ct-related failure (that is,
either ct was seen before or decryption of ct did not succeed or yield the expected
result), then one can easily leverage P1 to build a reduction that either breaks
the signature scheme or the INT-CTXT security of the AE scheme.

Hybrid 2. Identical to Hybrid 1, except that encryption of the 0 vector is
replaced with encryption of the honest client’s true input.

Claim. Assume that AE is semantically secure, Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof. Straightforward reduction to the semantic security of AE.

Hybrid 3. Identical to Hybrid 2, except that the challenge sk is now replaced
with the true gab again.

Claim. Assume that DDH is hard, Hybrid 3 is computationally indistinguishable
from Hybrid 2.

70

Proof. By straightforward reduction to DDH security.

Claim. Conditioned on simulation not aborting, Hybrid 3 is identically dis-
tributed as the real execution.

Proof. Straightforward to observe.

9 Variant Models and Additional Results

9.1 Composable Commitments from Transparent Enclaves

progowf

On input x: return owf(x)

progcom

On input (“commit”, b, c):
store (b, c), return c

On input (“open”, x, b′):
assert a tuple (b, c) has been stored
if owf(x) = c return b′ else return b

Protcom[sid ,R, C]
Receiver R:

On input “commit” from Z:

let eidR := Gatt.install(sid , progowf), let x
$←{0, 1}λ

let (c, σ) := Gatt.resume(eidR, x)
send (eidR, c, σ) to C and wait to receive (eidC , σ

′) from C
assert Σ.Vfmpk((sid , eidC , progcom, c), σ

′) and store eidC and output “receipt”

On input “open” from Z:
assert “commit” has been called and wait to receive (b, σ) from C
assert Σ.Vfmpk((sid , eidC , progcom, b), σ) and output b

Committer C:

On input (“commit”, b) from Z:
wait to receive (eidR, c, σ) from R and assert Σ.Vfmpk((sid , eidR, progowf , c), σ)
let eidC := Gatt.install(sid , progcom)
let (c, σ) := Gatt.resume(eidC , (“commit”, b, c))
send (eidC , σ) to R, output “okay”

On input “open” from Z:
assert “commit” has been called, let (b, σ) := Gatt.resume(eidC , (“open”,⊥,⊥))
send (b, σ) to R, output “okay”

Fig. 13: Composable commitment: both committer and receiver have
secure processors.

71

Many secure processors are known to be vulnerable to certain side-channel
attacks such as cache-timing or differential power analysis. Complete defense
against such side channels remains an area of active research [39–42,57,79].

Recently, Tramèr et al. [77] ask the question, what kind of interesting ap-
plications can we realize assuming that such side-channels are unavoidable in
secure processors? Tramèr et al. [77] then propose a new model which they call
the transparent enclave model. The transparent enclave model is almost the
same as our Gatt, except that the enclave program leaks all internal states to
the adversary A. Nonetheless, Gatt still keeps its master signing key msk secret.
In practice, this model requires us to only spend effort to protect the secure
processor’s attestation algorithm from side channels, and we consider the entire
user-defined enclave program to be transparent to the adversary.

Tramèr et al. then show how to realize interesting security tasks such as
cryptographic commitments and zero-knowledge proofs with only transparent
enclaves, albeit in a model where the secure processor setup is assumed to be
local to each protocol (i.e., with a fresh (mpk,msk) pair for each instance).

In contract, we show how to realize UC-secure commitments assuming only
(global) transparent enclaves (and when both parties have a secure processor
since otherwise the task would have been impossible as noted earlier). Although
intuition is quite simple — the committer could commit the value to its local
enclave, and later ask the enclave to sign the opening — it turns out that this
natural protocol candidate is not known to have provable security. Our actual
protocol involves non-trivial techniques to achieve equivocation when the receiver
is corrupt, a technical issue that arises commonly in UC proofs.

The transparent enclave functionality Ĝatt. We define the transparent en-
clave functionality Ĝatt to be almost identical to Gatt, except that besides out-
putting the pair (outp, σ) to the caller upon the resume entry point, it also leaks
to the caller all random bits internally generated during the computation.

Challenge in achieving equivocation. We note that because the commit-
ter must commit its value b to its local enclave, extraction is trivial when the
committer is corrupt. The challenge is how to equivocate when the receiver is
corrupt. In this case, the simulator must first simulate for the corrupt receiver
a commitment-phase message which contains a valid attestation. To do so, the
simulator needs to ask its enclave to sign a dummy value — note that at this
moment, the simulator does not know the committed value yet. Later, during
the opening phase, the simulator learns the opening from the commitment ideal
functionality Fcom. At this moment, the simulator must simulate a valid opening-
phase message. The simulator cannot achieve this through the normal execution
path of the enclave program, and therefore we must provide a special backdoor
for the simulator to program the enclave’s attestation on the opened value. Fur-
thermore, it is important that a real-world committer who is potentially corrupt
cannot make use of this backdoor to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must
accept a special value c for which the receiver knows a trapdoor x such that
owf(x) = c, where owf denotes a one-way function. Further, the committer’s

72

enclave must produce an attestation on the value c such that the receiver can
be sure that the correct c has been accepted by the committer’s enclave. Now,
if the committer produces the correct trapdoor x, then the committer’s enclave
will allow it to equivocate on the opening. Note that in the real-world execution,
the honest receiver should never disclose x, and therefore this backdoor does not
harm the security for an honest receiver. However, in the simulation when the
receiver is corrupt, the simulator can capture the receiver’s communication with
Gatt and extract the trapdoor x. Thus the simulator is now able to program the
enclave’s opening after it learns the opening from the Fcom ideal functionality.

The protocol works as follows:

– First, the receiver selects a random trapdoor x, and sends it to its local
enclave. The local enclave computes c := owf(x) where owf denotes a one-
way function, and returns (c, σ) where σ is an attestation for c.

– Next, the committer receives (c, σ) from the receiver. If the attestation ver-
ifies, it then sends to its enclave the bit b to be committed, along with the
value c that is the outcome of the one-way function over the receiver’s trap-
door x. The committer’s secure processor now signs the c value received in
acknowledgment, and the receiver must check this attestation to make sure
that the committer did send the correct c to its own enclave.

– Next, during the opening phase, the committer can ask its local enclave to
sign the opening of the committed value, and demonstrate the attestation to
the receiver to convince him of the opening. Due to a technicality commonly
referred to as “equivocation” that arises in UC proofs, the enclave’s “open”
entry point provides the following backdoor: if the caller provides a pair of
values (x, b′) such that owf(x) = c where c was stored earlier by the enclave,
then the enclave will sign b′ instead of the previously committed value b.

Theorem 18 (Composable commitment with omnipresent secure pro-
cessors). Assume that owf is a secure one-way function, and Σ is secure, the
protocol described in Figure 13 UC-realizes Fcom[sid , C,R] where R denotes the
receiver, and C denotes the committer.

Proof. We consider three cases, where either the receiver R, the committer C, or
both are honest. In all cases, we consider an ideal-world adversary (the simulator
Sim) that internally runs a copy of a real-world adversary A and emulates an
interaction between A and honest parties running Protcom.

Sim forwards any messages sent between Z and A. When A wants to call
Gatt, Sim records the message, forwards it to Gatt, and records the response.

Committer is corrupt: We first describe the ideal-world simulator Sim. Sim
runs a copy of the real-world adversary A and simulates an execution of Protcom
with an honest R. In particular, Sim emulates R’s calls to Gatt. Observe that the
responses sent by Gatt are anonymous, and since both the committer and receiver
are in the registry (i.e., have secure processors), the responses are identically
distributed no matter who the caller is.

73

Specifically, Sim installs an enclave with id eidR running progowf in Gatt, ob-
tains (c, σ) by resuming the enclave with a random input x, and sends (eidR, c, σ)
to the corrupted committer. Then, when A sends (eidC , σ) to R, let c be the
challenge that Sim sent to A on behalf of R. Then, the simulator aborts and
outputs sig-failure1 in the following cases:

– A never invoked Gatt.install(sid , progcom) with eidC as response; or
– (c, σ) was never output by Gatt on a valid call
Gatt.resume(eidC , (“commit”, b, c)) from A.

If Sim does not abort, it looks up this value b and sends (“commit”, b) to
Fcom on C’s behalf. Note that such a b must exist (as otherwise Sim aborts) and
it must be unique (as progcom has non-reentrant entry points, i.e., it outputs
⊥ if queried more than once). Finally, when A sends (b′, σ) to R, Sim aborts
and outputs sig-failure2, if (b′, σ) was not a response of Gatt on a call by A
of the form Gatt.resume(eidC , (“open”, ,)). Otherwise, if b′ 6= b, where b is
the value that Sim sent to Fcom, Sim aborts and outputs owf-failure. In all
other cases, Sim continues the simulation and sends “open” to Fcom on C’s behalf.

Indistinguishability: As the simulator emulates the honest receiver R per-
fectly for A, conditioned on Sim not aborting, the views of A in a real execution
and in the ideal-world execution above are identically distributed. Furthermore,
conditioned on Sim not aborting in the simulation, it is immediate that A even-
tually opens the value b that Sim “extracted” and sent to Fcom. Thus, if Sim
does not abort, the output of the honest receiver R are identical in the real and
ideal worlds, and so are the outputs of the environment Z.

It remains to argue that if Sim aborts, then with all but negligible probability
so would an honest R running Protcom:

– Note that although the environment Z can query Gatt through any dummy
honest party, the sid ′ in the query must be different from the challenge sid .
Therefore Z is not able to obtain any signatures pertaining to the challenge
sid from Gatt through an honest dummy party. Z can query Gatt with any
forged sid through the adversary A — however these queries are observable
to Sim, and with all but negligible probability a different eidC is generated
on each enclave installation. Thus, if the signature scheme is secure, it is
easy to see that the probability of R’s first verification succeeding, yet Sim
aborting with a sig-failure1, is negligible.

– By a similar argument, conditioned on Sim not aborting with output sig-
failure1, the probability of R’s second signature verification succeeding but
Sim aborting with output sig-failure2 is negligible.

– Conditioned on Sim not aborting with a sig-failure, the only way for A to
open to a different value b′ than the one extracted by Sim is by calling progcom
with an input x satisfying owf(x) = c, where c is the challenge sent by R to
A. By the security of the one-way function, the probability of this event is
negligible.

74

Receiver is corrupt: When A sends (eidR, c, σ) to C, the simulator aborts and
outputs sig-failure in the following cases:

– A never invoked Gatt.install(sid , progowf) with eidR as response.
– (c, σ) was never output by Gatt on a valid call Gatt.resume(eidR, x) from A.

Otherwise, Sim performs a reverse lookup of the value x submitted by A
during a previous Gatt.resume(eidR, x) query where the response was (c, σ).
The simulator Sim records that x. Again, note that this x must exist and
be unique, conditioned on Sim not aborting. When Fcom notifies Sim that C
committed in the ideal world, Sim calls eidC := Gatt.install(sid , progcom)
followed by (c′, σ′) := Gatt.resume(eidC , (“commit”, 0, c)) where c is from
the message received earlier from A. Sim sends (eidC , c

′, σ′) to A on behalf
of the simulated C. Finally, upon receiving the opening of the committed
bit b∗ from Fcom, the simulator equivocates the commitment by calling
(b∗, σ∗) := Gatt.resume(eidC , (“open”, x∗, b∗)). It now sends (eidC , b

∗, σ∗) to A
on behalf of the simulated C.

Indistinguishability: Consider the following sequence of hybrids from the real-
world to the ideal-world executions.

– Real execution. Here Z interacts with A and an honest committer in the
real-world protocol, with Sim perfectly emulating C, while observing and for-
warding messages between A and Gatt.

– Hybrid 1. This is the same as the real execution, except that Sim aborts if
the sig-failure event defined above occurs but C’s signature verification for the
obtained (eidR, c, σ) would succeed. Otherwise, Sim records the pre-image x
sent by A to progowf .
Similarly to previous cases, the probability of a successful signature verifi-
cation if Sim aborts with sig-failure can trivially be shown to be negligible
under the assumption that the signature scheme is secure. Thus, no p.p.t.
algorithms (A,Z) can distinguish Hybrid 1 from the real execution.

– Hybrid 2. The same as Hybrid 1, except that Sim always sends
(“commit”, 0, c) to the installed enclave in Gatt. When later asked to decom-
mit to b, Sim sends (“open”, x, b) to the progcom, where x is the pre-image
recorded by Sim in Hybrid 1.
As the output of progcom and the attestation σ produced by Gatt are indepen-
dent of the committed value b (given that the caller knows a pre-image of c
under owf), the view of A is identically distributed in Hybrid 2 and Hybrid
1.

Finally, it remains to observe that Hybrid 2 is indistinguishable from an ideal
world execution with Sim and Fcom.

Committer and Receiver are honest: As C and R communicate over secure
channels, simulating the view of the adversary A is trivial: when Sim is notified
by Fcom that C committed, Sim emulates an interaction between R and C over

75

a secure channel in the presence of A (note that the transmitted messages are
of fixed length). If A drops any message sent between C and R, Sim aborts. Sim
simply forwards any messages between A and Gatt.

9.2 Non-Anonymous Attestation

While some secure processors such as Intel SGX rely on anonymous attestation,
others such as older versions of TPM rely on non-anonymous attestation. One
typical realization is for the manufacturer to sign a certificate for the secure
processor’s long-term public key, and the corresponding secret key is embedded
in non-volatile memory inside the secure processor, such that the secure processor
can sign attestations with it. In general, such a signature chain can be thought
of as using the manufacturer’s public key mpk to sign messages prefixed by the
platform’s identity.

It is not hard to see that our protocols for a single secure processor that
leverage Gacrs and witness indistinguishable proofs (see Sections 7 and 8.5) can
easily be adapted to work with non-anonymous attestation — the only modifica-
tion needed is to add the platform’s identity (denoted P) as an extra witness in
the witness-indistinguishable proof, and prove that either the encrypted witness
is the pair (P, σ) such that σ is a valid attestation on P||msg; or the encrypted
witness is the receiver’s identity key.

However, note that our protocols that rely on all parties to have a secure
processor no longer work in the case of non-anonymous attestation. Specifically,
these protocols (see Sections 6.2 and 8.6) send attestations around in the clear. In
the case of anonymous attestation and when secure processors are omnipresent,
sending attestations around cannot implicate an honest party of participation;
however, in the case of non-anonymous attestation, since the attestation now
binds to the party’s identifier, sending signatures around in the clear would lead
to non-deniability.

76

Background and Preliminaries

77

A Universal Composition Background and Conventions

In this section, we first give a brief background on the universal composition
framework [21, 22, 26]. We then introduce some new UC conventions we will
adopt throughout this paper.

A.1 Brief Background on the Universal Composition Framework

The UC framework allows for modular analysis of large programs: various sub-
routines can be analyzed as separate entities, the security of which is assessed
independently by means of realizing some ideal functionality F . The universal
composabilitiy theorem then states, informally, that the security properties of a
protocol that makes subroutine calls to F are retained if F is replaced by the
actual program or protocol that realizes it.

At a high level, security in the UC framework consists in showing that what-
ever information can be learned by some network adversary A in a real world
execution of some protocol π, could also have been obtained by a simulator Sim
attacking an ideal world protocol execution, where all parties privately interact
with an idealized trusted functionality F .

The presence of arbitrary other protocols running alongside π is modeled via
an environment Z, which determines the inputs to all parties participating in a
protocol and sees all the parties’ outputs. The environment interacts with the
adversary (A or Sim) to coordinate party corruptions. The protocol π is said to
UC realize some ideal functionality F , if for any real-world adversary A, there
exists a simulator Sim, such that no p.p.t. environment Z can distinguish an
interaction with A and parties running π from an interaction with Sim and F .

By the composition theorem [21], any protocol that makes subroutine calls
to F retains its security properties if all calls to F are appropriately replaced by
instances of a protocol π that UC realizes F .

Setup functionalities. Many functionalities of interest cannot be realized in
the “plain” UC framework. It is thus customary to consider hybrid models, in
which parties get access to some ideal setup functionality.

In the basic UC framework, these setup functionalities are “local” to a par-
ticular protocol execution. The environment Z (which we recall models arbitrary
other protocols running in the network) can only interact with the setup func-
tionality F through the adversary. In this sense, the basic UC framework fails
to capture composable security in the presence of globally available setup func-
tionalities such as PKIs or trusted hardware platforms.

UC with global setup. To remedy the shortcoming of the plain UC framework,
Canetti et al. [22] propose a Generalized UC model (GUC), which enables proofs
of secure composition in the presence of global setup functionalities, that can be
accessed by any party in any protocol instance in the system.

The main technical difference compared to the original UC framework, is
that the environment Z is now allowed to interact with the setup functionality
“directly”, i.e., without going through A or Sim. The setup functionality must

78

thus be non-programmable, meaning that the simulator Sim cannot select the
secret state that makes up the setup functionality, as this would be detectable
by the environment.

As a concrete example, if we were to model trusted hardware in the UC
framework, the simulator could select the secret key used for signing attestation,
and communicate the corresponding public key to Z. In the GUC framework
however, Z need not interact with Sim to obtain the trusted platform’s public
key. Any simulation must then be consistent with this global key pair, with Sim
having no knowledge of the secret key.

Previous works [22, 25] have noticed that achieving security in the GUC
model is remarkably non-trivial: although the global setup has to be publicly
available, it must also provide some kind of hidden “trapdoor” information, that
the simulator can exploit to “cheat” in a simulation.

A.2 UC Notational Conventions

In this paper, we use the term UC and GUC indistinguishably. Let G denote a
global functionality. When we say that a G-hybrid protocol UC-realizes a func-
tionality, we mean that the standard UC simulation definition holds in light of
the fact that Z can interact with G.

Session conventions. UC assumes that the environment Z invokes each proto-
col instance with a unique session identifier sid . While earlier UC papers adopt
the convention that ITIs include sid and often the party identifiers in messages,
in this paper, we use a simplified notation where we simply parametrize the
functionality or protocol instance with the session identifier as well as identifiers
of parties involved. For example, Foutsrc[sid , C,S] denotes an Foutsrc instance
with session identifier sid , and involving a client C and a server S. Similarly,
Protoutsrc[sid , C,S] denotes a protocol instance with session identifier sid , and
involving a client C and a server S. In this way, both the sid and the party
identifiers can be referenced by the code of the ITIs. Note that this convention
only works when the sid and party identifiers can be statically determined (as
opposed to dynamically or at run-time), which is the case throughout this paper.

Reentrant and non-reentrant activation points. In this paper, all reentrant
activation points for ITIs are colored blue and followed by an asterisk∗, and all
non-reentrant activation points for ITIs are colored green. A reentrant activation
point can be invoked multiple times. A non-reentrant activation point can only
be invoked once; and for all future invocations the ITI would do nothing and
immediately return ⊥.

Assertions. When we write the code for ITIs, we often use assertions. When
assertions fail, the ITI immediately returns ⊥. When enclave programs have an
assertion failure, we assume that Gatt simply returns ⊥.

Secure channels. In our paper, we use the notation send to denote a UC-secure
secure channel, realized with the standard secure channel functionality denoted

79

Fsc. The secure channel functionality can be realized from a global PKI using
Diffie-Hellman key exchange and authenticated encryption for instance [27].

A.3 Multi-Party Computation

Fmpc[sid , f,P1, . . . ,Pn]

On receive∗ xi from Pi:
notify A of (Pi, |xi|)
store xi and ignore further messages from Pi
if an xi was received from all Pi, let y := f(x1, . . . , xn)
generate delayed private outputs y for each party P1, . . . ,Pn

Fig. 14: Ideal multiparty computation functionality.

Fcom[sid , C,R]

On receive (“commit”, x) from C:
store x, generate a public delayed message “receipt” to R.

On receive “open” from C:
assert some x was stored, generate a private delayed message (“open”, x) to R.

Fig. 15: Ideal two-party commitment functionality.

Useful functionalities. We define a few well-known ideal functionalities, in-
cluding multi-party computation and commitment. See Figure 14 and Figure 15.

Sequentially and universally composable multi-party computation. We
define two notions of multi-party computation: sequentially composable MPC
and UC-secure MPC. If a protocol is UC-secure, then it is sequentially com-
posable. We will use the weaker notion of security, i.e., sequentially composable
MPC for our lower bounds (and this makes our lower bound results stronger),
but the stronger security notion for our constructions.

Definition 2 (Sequentially composable multi-party computation [20]).
We say that protocol Π realizes F , if for any p.p.t. adversary A, there exists a
p.p.t. simulator S,

{idealF,S(λ, x1, . . . , xnz)}x1,...,xn

c≡ {execΠ,A(λ, x1, . . . , xn,)}x1,...,xn,z

where x1, . . . , xn denotes the n parties’ respective inputs, and z denotes an aux-
iliary advice string provided to the adversary.

80

In the above, the notations ideal and exec denote the random variable consist-
ing of the honest parties’ outputs as well as the protocol transcripts as viewed
by the corrupt parties.

Definition 3 (Universally composable MPC [21]). We say that protocol
Π UC-realizes F , if for any p.p.t. adversary A, there exists a p.p.t. simulator
S, such that for any p.p.t. environment Z,

idealF,S,Z(λ)
c≡ execΠ,A,Z(λ)

In the above, the environment Z is allowed to adaptively choose inputs for all
parties, and communicate with the adversary in arbitrary manners. The nota-
tions ideal and exec denote the views of the environment Z in the executions,
including all parties’ inputs and outputs, as well as any protocol transcript as
viewed by the adversary.

Note that the main difference between the two definitions is the following:
for sequential composition, the simulator S can depend on the adversary A;
whereas in universal composable security, the simulator S must work for all
environment Z (and the adversary A can be considered dummy, i.e., only pass
messages between Z and the honest parties).

A.4 Preliminaries on Zero-Knowledge Proofs

In the remainder of this section, f(λ) ≈ g(λ) means that there exists a negligible
function ν(λ) such that |f(λ)− g(λ)| < ν(λ).

A non-interactive proof system henceforth denoted NIWI for an NP language
L consists of the following algorithms:

– crs ← Gen(1λ,L), also written as crs ← KeyGenNIWI(1
λ,L): Takes in a secu-

rity parameter λ, a description of the language L, and generates a common
reference string crs. In this paper, we use a global crs, which is part of our
global setup Gacrs.

– π ← Prove(crs, stmt, w): Takes in crs, a statement stmt, a witness w such
that (stmt, w) ∈ L, and produces a proof π.

– b ← Ver(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 or 1, denoting accept or reject.

Perfect completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ R, we have that

Pr
[
crs← Gen(1λ,L), π ← Prove(crs, stmt, w) : Ver(crs, stmt, π) = 1

]
= 1

Computational soundness. A non-interactive proof system for the language
L is said to be computationally sound, if for all p.p.t. adversaries A,

Pr
[
crs← Gen(1λ,L), (stmt, π)← A(crs) : (Ver(crs, stmt, π) = 1) ∧ (stmt /∈ L)

]
≈ 0

81

Foutsrc[sid , C,S]

On receive∗ (“compute”, f, x) from C:
let y := f(x)
send (|f |+ |x|, |y|) to S and A
generate a delayed private output y to C

Fig. 16: The ideal secure outsourcing functionality. The server and ad-
versary learn nothing more than the size of the client’s inputs and outputs

Witness indistinguishability. A non-interactive proof system for the language
L is said to be computationally sound, if for all p.p.t. adversaries A,

Pr

crs← Gen(1λ,L),
(stmt, w0, w1)← A(crs),
π ← Prove(crs, stmt, w0) :
(stmt, w0) ∈ L ∧ (stmt, w1) ∈ L
∧A(π) = 1

 ≈ Pr

crs← Gen(1λ,L),
(stmt, w0, w1)← A(crs),
π ← Prove(crs, stmt, w1) :
(stmt, w0) ∈ L ∧ (stmt, w1) ∈ L
∧A(π) = 1

Note that although we define non-interactive witness indistinguishable proofs

in the global common reference string model for ease of exposition, our protocol
and proof (for when only a single party has a secure processor) still work if
we instead adopted interactive versions that do not require a global common
reference string — nonetheless our protocols for a single secure processor would
require the use of Gacrs elsewhere to circumvent a theoretical impossibility that
we show.

B Warmup: Secure Outsourcing from Gatt

To illustrate the usage of the Gatt setup assumption to achieve formal composable
security, we begin by considering a very simple outsourcing application. The ideal
functionality we wish to achieve is denoted Foutsrc and described in Figure 16.

In Figure 17 we show a simple protocol between a client C and a server S to
realize Foutsrc. The server is in possession of a trusted hardware platform and
initializes an enclave running the public program progoutsrc.

Theorem 19 (Secure outsourcing from Gatt). Assume that the signature
scheme Σ is existentially unforgeable under chosen message attacks, the Deci-
sional Diffie-Hellman assumption holds in the algebraic group adopted, the au-
thenticated encryption scheme AE is perfectly correct and satisfies the standard
notions of INT-CTXT and semantic security. Then, the Gatt − hybrid protocol
Protoutsrc UC-realizes Foutsrc when the client C is honest, and the server S is
a static, malicious adversary.

Proof. We now prove Theorem 19, i.e., that Protoutsrc securely realizes Foutsrc.
We consider two cases: when the client is honest and server is corrupt; and when
both the client and server are honest.

82

progoutsrc

On input (“keyex”, ga):

let b←$Zp, and store sk := (ga)b

return (ga, gb)

On input∗ (“compute”, ct):
let (f, x) := AE.Decsk(ct)
assert decryption success, ct not seen before
let y := f(x) and return ctout := AE.Encsk(y)

Protoutsrc[sid , C,S]

Server S:

On receive (“keyex”, ga) from C:
let eid := Gatt.install(sid , progoutsrc)
let ((ga, gb), σ) := Gatt.resume(eid , (“keyex”, ga)) and send (eid , gb, σ) to C

On receive∗ (“compute”, ct) from C:
let (ctout, σ) := Gatt.resume(eid , (“compute”, ct)) and send ctout to C

Client C:

On initialize:
let a←$Zp, mpk := Gatt.getpk() and send (“keyex”, ga) to S
wait to recv (eid , gb, σ) from S and assert Σ.Vfmpk((sid , eid , progoutsrc, (g

a, gb)), σ)

let sk := (gb)a

On receive∗ (“compute”, f, x) from Z:
let ct := AE.Encsk((f, x)) and send (“compute”, ct) to S, wait to receive ctout
let y := AE.Decsk(ctout) and assert decryption success and ctout not seen before
output y

Fig. 17: A protocol Protoutsrc that realizes the secure outsourcing functionality
Foutsrc. The public group parameters (g, p) are hardcoded into progoutsrc.

83

B.1 Honest Client and Malicious Server

Ideal-world simulator Sim. We first describe an ideal-world simulator Sim,
and then show that no p.p.t. environment Z can distinguish the ideal-world and
real-world executions.

– Unless noted otherwise below, any communication between Z and A or be-
tween A and Gatt is simply forwarded by Sim.

– The simulator Sim starts by emulating the setup of a secure channel between
C and Gatt. Sim sends (“keyex”, ga) to A (that controls the corrupted S) for
a randomly chosen a.

– When Sim receives a tuple (eid , gb, σ) from A, Sim aborts outputting sig-
failure if σ would be validated by a honest C, yet Sim has not recorded the
following A ⇔ Gatt communication:

• eid := Gatt.install(sid , progoutsrc);

• ((ga, gb), σ) := Gatt.resume(eid , (“keyex”, ga))

Else, Sim computes sk = gab.
– When Sim receives a message (|f + x|, |y|) from Foutsrc, it proceeds as fol-

lows: Sim sends (“compute”, ct := AE.Encsk((f0, x0))) to A where f0 is some
canonical function and x0 some canonical input. For simplicity, we assume
that functions, inputs and outputs computed by Foutsrc are of fixed size.

– Then, Sim waits to receive ctout from A. If ctout was not the result of a pre-
vious Gatt.resume(eid , (“compute”, ct)) call but ctout successfully decrypts
under sk, the simulator aborts outputting authenc-failure. Otherwise, Sim al-
lows Foutsrc to deliver y to C in the ideal world.

We now prove the indistinguishability of the real-world and ideal-world exe-
cutions through a sequence of hybrids.

Claim. Assume that the signature scheme Σ is secure, except with negligible
probability, the simulated execution does not abort outputting sig-failure.

Proof. Straightforward reduction to the security of the digital signature scheme
Σ.

Hybrid 1. Identical to the simulated execution, but the secret key sk = gab

shared between C and Gatt is replaced with a random element from the appro-
priate domain.

Claim. Assume that the DDH assumption holds, then Hybrid 1 is computation-
ally indistinguishable from the simulated execution.

Proof. Straightforward by reduction to the DDH assumption.

Claim. Assume that AE satisfies INT-CTXT security. It holds that in Hybrid 1,
authenc-failure does not happen except with negligible probability.

84

Proof. Straightforward by reduction to the INT-CTXT security of authenticated
encryption. If A makes a Gatt.resume(eid , (“compute”, ct′)) call where ct′ is not
the ciphertext previously sent by Sim, either ct′ is a previously seen ciphertext
(causing progoutsrc to abort, or the decryption of ct′ in progoutsrc fails with over-
whelming probability.

Similarly, is the output ctout sent by A to Sim does not come from a cor-
rect Gatt.resume(eid , (“compute”, ct)) call, then either ctout is a previously seen
ciphertext, or C’s decryption would fails with overwhelming probability.

Hybrid 2. Instead of sending ct := AE.Encsk((f0, x0)) to A, we now send ct :=
AE.Encsk((f, x)) where f and x are the honest client’s true inputs.

Claim. Assume that AE is semantically secure, Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof. Straightforward reduction to the semantic security of authenticated en-
cryption.

Hybrid 3. Now instead of using a random key between C and Gatt, we switch
back to using the real key gab.

Claim. Assume that the DDH assumption holds, then Hybrid 3 is computation-
ally indistinguishable from Hybrid 2.

Proof. Straightforward by reduction to the DDH assumption.

Finally, observe that conditioned on the simulator not aborting and AE being
perfectly correct, Hybrid 3 is identically distributed as the real execution.

B.2 Honest Client and Server

The setting where both parties are honest is trivial, as all communication be-
tween S and C is assumed to occur over secure channels.

While most of the information sent between S and C could be easily simulated
in the presence of authenticated channels, the attestations σ produced by Gatt are
more problematic: If both parties are honest, the simulator cannot obtain valid
signatures from Gatt (assuming the adversary has corrupted no party P ∈ reg).
If the protocol was using authenticated channels, it would be necessary to model
the fact that protocol execution can “leak” valid signatures from Gatt to the
adversary. This is a deniability issue. The signature is proof that some party
P ∈ reg was involved in the protocol.

When introducing protocols for general two-party computation where a single
party has access to trusted hardware, we show how to relax our Gatt assumption
to resolve this deniability issue.

85

	Formal Abstractions for Attested Execution Secure Processors

